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REGULAR AUTOMORPHISMS
AND CALOGERO–MOSER FAMILIES

CÉDRIC BONNAFÉ

Abstract. We study the subvariety of fixed points of an automorphism of
a Calogero–Moser space induced by a regular element of finite order of the
normalizer of the associated complex reflection group W . We determine some
of (and conjecturally all) the C×-fixed points of its unique irreducible com-
ponent of maximal dimension in terms of the character table of W . This is
inspired by the mysterious relations between the geometry of Calogero–Moser
spaces and unipotent representations of finite reductive groups, which is the
theme of another paper [Pure Appl. Math. Q. 21 no. 1 (2025), 131–200].

Introduction

If G is a split reductive group over a finite field Fq with q elements with Weyl
group W , Deligne and Lusztig [12] defined a particular class of irreducible charac-
ters of the finite group G = G(Fq), called the unipotent characters of G. To W ,
one can also associate a Calogero–Moser space Z at equal parameters, which is a
complex irreducible normal affine Poisson variety endowed with a C×-action [13].
The main theme of a previous paper of the author [4] is the observation that many
aspects of the combinatorics of unipotent characters of G have a conjectural ana-
logue in the geometry of Z, thanks to the Poisson structure and the C×-action.
Here are two examples:

• Unipotent characters have been partitioned by Lusztig [20] into families
and it has been conjectured by Gordon–Martino [17] that these families
are in bijection with C×-fixed points of Z. Note that this conjecture has
been proved in all cases except types E6, E7 and E8 (see [17, 1, 7]).

• For d a natural number, Broué–Malle–Michel [9] defined a partition of
unipotent characters into d-Harish-Chandra series (generalizing the clas-
sical partition into Harish-Chandra series, which corresponds to the case
d = 1). This partition is conjecturally related to the stratification of Zµd

by symplectic leaves (here, µd denotes the group of complex d-th roots of
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unity); the reader may find more details in [4, §12.C]. See [4, Part IV] for
a list of cases where this conjecture is proved.

In the second point, whenever d is a regular number in the sense of Springer [21],
it has been observed by Broué–Malle–Michel [10, Rem. 4.21] that the families of
unipotent characters which meet the principal d-Harish-Chandra series are charac-
terized by a property involving character values of W (again, more details may be
found in [4, Ex. 12.9]). If one believes in the analogy between unipotent charac-
ters and geometry of Z, this suggests [4, Conj. 7.5] a conjectural characterization
of C×-fixed points meeting the unique irreducible component of Zµd of maximal
dimension in terms of the character table of W . The proof of one direction of this
conjecture is the theme of the present paper.

Note that the conjecture [4, Conj. 7.5] involves only the Calogero–Moser space
and can be studied without any reference to unipotent characters. Moreover, since
Calogero–Moser spaces are defined for any finite complex reflection group (and not
only for Weyl groups) and for a bigger family of parameters, this conjecture is
somewhat more general than what has been explained above in this introduction,
which can be seen as a motivation for the results obtained here. Therefore, from
now on, we will work in this more general context of complex reflection groups. Let
V be a finite-dimensional complex vector space and let W be a finite subgroup of
GLC(V ) generated by reflections (i.e., automorphisms of V whose fixed points space
is an hyperplane). To some parameter k, Etingof and Ginzburg [13] associated a
normal irreducible affine complex variety Zk = Zk(V,W ) called a (generalized)
Calogero–Moser space. If τ is an element of finite order of the normalizer of W in
GLC(V ) stabilizing the parameter k, it induces an automorphism of Zk.

We denote by Vreg the open subset of V on which W acts freely, and we assume
that V τreg ̸= ∅ (then τ is called regular). In this case, there exists a unique irre-
ducible component (Zτ

k )max of Zτ
k of maximal dimension (as it will be explained

in Section 2). Recall that Zk is endowed with a C×-action and that we have a
surjective map Irr(W ) → ZC×

k defined by Gordon [16] (induced by the action of
the center of a rational Cherednik algebra on baby Verma modules) whose fibers are
called the Calogero–Moser k-families of W . Here, Irr(W ) is the set of irreducible
characters of W . If p ∈ ZC×

k , we denote by Fp its associated Calogero–Moser
k-family. It is a natural question to wonder which C×-fixed points of Zτ

k belong
to (Zτ

k )max. The aim of this note is to provide a partial answer in terms of the
character table of W :

Theorem A. Assume that V τreg ̸= ∅. Let p ∈ ZC×

k be such that τ(p) = p. If there
exists χ in Fτp such that χ̃(τ) ̸= 0, then p ∈ (Zτ

k )max.

In this statement, if χ is a τ -stable irreducible character of W , we denote by χ̃ an
extension of χ to the finite group W ⟨τ⟩ (see [18, Cor. 11.22] for the existence of χ̃):
note that |χ̃(τ)|2 does not depend on the choice of χ̃ (see [18, Cor. 6.17]). Our proof
of Theorem A makes an extensive use of the Gaudin operators introduced in [6,
§8.3.B]: whenever χ̃(τ) ̸= 0, the decomposition of a representation affording χ with
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respect to generalized eigenspaces of the Gaudin operators allows us to construct
a τ -fixed point p′ in (Zτ

k )max such that p = limξ→0 ξ · p′.
We conjecture that the converse of Theorem A holds [4, Conj. 7.5]:

Conjecture B. Assume that V τreg ̸= ∅. Let p ∈ ZC×

k be such that τ(p) = p and
p ∈ (Zτ

k )max. Then there exists χ in Fτp such that χ̃(τ) ̸= 0.

General notation. Throughout this paper, we will abbreviate ⊗C as ⊗, and all
varieties will be algebraic, complex, quasi-projective and reduced. If X is an affine
variety, we denote by C[X ] its coordinate ring.

If X is a subset of a vector space V (or of its dual V ∗), and if Γ is a subgroup
of GLC(V ), we denote by ΓX the pointwise stabilizer of X. If moreover Γ is finite,
we will identify (V Γ)∗ and (V ∗)Γ.

1. Calogero–Moser spaces and families

Hypothesis and notation. We fix in this paper a finite-dimensional complex
vector space V and a finite subgroup W of GLC(V ). We set

Ref(W ) = {s ∈ W | codimC V
s = 1}

and we assume throughout this paper that

W = ⟨Ref(W )⟩,

i.e., that W is a complex reflection group.

1.A. About W . We set ε : W → C×, w 7→ det(w). We identify C[V ] (resp. C[V ∗])
with the symmetric algebra S(V ∗) (resp. S(V )).

We denote by A the set of reflecting hyperplanes of W , namely

A = {V s | s ∈ Ref(W )}.

If H ∈ A, we denote by αH an element of V ∗ such that H = Ker(αH), and by α∨
H

an element of V such that V = H ⊕ Cα∨
H and the line Cα∨

H is WH -stable. We set
eH = |WH |. Note that WH is cyclic of order eH and that Irr(WH) = {ResWWH

εj |
0 ≤ j ≤ e − 1}. We denote by εH,j the (central) primitive idempotent of CWH

associated with the character ResWWH
ε−j , namely

εH,j = 1
eH

∑
w∈WH

ε(w)jw ∈ CWH .

If Ω is a W -orbit of reflecting hyperplanes, we write eΩ for the common value of
all the eH , where H ∈ Ω. We denote by ℵ the set of pairs (Ω, j) where Ω ∈ A and
0 ≤ j ≤ eΩ − 1. The vector space of families of complex numbers indexed by ℵ will
be denoted by Cℵ; elements of Cℵ will be called parameters. If k = (kΩ,j)(Ω,j)∈ℵ ∈
Cℵ, we define kH,j for all H ∈ Ω and j ∈ Z by kH,j = kΩ,j0 , where Ω is the W -orbit
of H and j0 is the unique element of {0, 1, . . . , eH − 1} such that j ≡ j0 mod eH .
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We denote by Vreg the set of elements v of V such that Wv = 1. It is an open
subset of V , and recall from the Steinberg–Serre theorem [8, Thm. 4.7] that

Vreg = V \
⋃
H∈A

H.

In particular, Vreg is a principal open affine subset of V and

C[Vreg] = C[V ][1/
∏
H∈A

αH ].

1.B. Rational Cherednik algebra at t = 0. Let k ∈ Cℵ. We define the rational
Cherednik algebra Hk (at t = 0) to be the quotient of the algebra T(V ⊕ V ∗) ⋊W
(the semi-direct product of the tensor algebra T(V ⊕ V ∗) with the group W ) by
the relations

[x, x′] = [y, y′] = 0,

[y, x] =
∑
H∈A

eH −1∑
j=0

eH(kH,j − kH,j+1) ⟨y, αH⟩ · ⟨α∨
H , x⟩

⟨α∨
H , αH⟩

εH,j
(1.1)

for all x, x′ ∈ V ∗, y, y′ ∈ V . Here, ⟨ , ⟩ : V × V ∗ → C is the standard pairing. The
first commutation relations imply that we have morphisms of algebras C[V ] → Hk

and C[V ∗] → Hk. Recall [13, Thm. 1.3] that we have an isomorphism of C-vector
spaces

C[V ] ⊗ CW ⊗ C[V ∗] ∼−→ Hk

induced by multiplication (this is the so-called PBW-decomposition).

Remark 1.1. Let (lΩ)Ω∈A/W be a family of complex numbers and let k′ ∈ Cℵ be
defined by k′

Ω,j = kΩ,j + lΩ. Then Hk = Hk′ . This means that there is no loss
of generality if we consider, for instance, only parameters k such that kΩ,0 = 0 for
all Ω, or only parameters k such that kΩ,0 + kΩ,1 + · · · + kΩ,eΩ−1 = 0 for all Ω (as
in [6]).

1.C. Calogero–Moser space. We denote by Zk the center of the algebra Hk; it
is well-known [13, Theo 3.3 and Lem. 3.5] that Zk is an integral domain, which
is integrally closed. Moreover, it contains C[V ]W and C[V ∗]W as subalgebras [16,
Prop. 3.6]. So, by the PBW-decomposition, Zk contains P = C[V ]W ⊗ C[V ∗]W ,
and it is a free P-module of rank |W | (see [13, Prop. 4.15]). We denote by Zk
the affine algebraic variety whose ring of regular functions C[Zk] is Zk: this is the
Calogero–Moser space associated with the datum (V,W, k). It is irreducible and
normal.

We set P = V/W ×V ∗/W , so that C[P] = P and the inclusion P ↪→ Zk induces
a morphism of varieties

Υk : Zk −→ P

which is finite and flat.
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1.D. Calogero–Moser families. Using the PBW-decomposition, we define a C-
linear map ΩHk : Hk −→ CW by

ΩHk (fwg) = f(0)g(0)w

for all f ∈ C[V ], g ∈ C[V ∗] and w ∈ CW . This map is W -equivariant for the action
on both sides by conjugation, so it induces a well-defined C-linear map

Ωk : Zk −→ Z(CW ).

Recall from [6, Cor. 4.2.11] that Ωk is a morphism of algebras.
Calogero–Moser families were defined by Gordon using his theory of baby Verma

modules [16, §4.2 and §5.4]. We explain here an equivalent definition given in [6,
§7.2]. If χ ∈ Irr(W ), we denote by øχ : Z(CW ) → C its central character (i.e.,
øχ(z) = χ(z)/χ(1) is the scalar by which z acts on an irreducible representation
affording the character χ). We say that two characters χ and χ′ belong to the same
Calogero–Moser k-family if øχ ◦ Ωk = øχ′ ◦ Ωk.

In other words, the map øχ ◦Ωk : Zk → C is a morphism of algebras, so it might
be viewed as a point φk(χ) of Zk, which is easily checked to be C×-fixed. This
defines a surjective map [16, §5.4]

φk : Irr(W ) −→ ZC×

k

whose fibers are the Calogero–Moser k-families. If p ∈ ZC×

k , we denote by Fp the
corresponding Calogero–Moser k-family.

1.E. Alternative parameters. Let C denote the space of maps Ref(W ) → C
which are constant on conjugacy classes of reflections. The element∑

(Ω,j)∈ℵ

∑
H∈Ω

(kH,j − kH,j+1)eHεH,j

of Z(CW ) is supported only by reflections, so there exists a unique map ck ∈ C
such that ∑

(Ω,j)∈ℵ

∑
H∈Ω

(kH,j − kH,j+1)eHεH,j =
∑

s∈Ref(W )

(ε(s) − 1)ck(s)s.

Then the map Cℵ → C, k 7→ ck is linear and surjective. With this notation, we
have

[y, x] =
∑

s∈Ref(W )

(ε(s) − 1)ck(s) ⟨y, αs⟩ · ⟨α∨
s , x⟩

⟨α∨
s , αs⟩

s

for all y ∈ V and x ∈ V ∗. Here, αs = αV s and α∨
s = α∨

V s .

1.F. Actions on the Calogero–Moser space. The Calogero–Moser space Zk
is endowed with a C×-action and an action of the stabilizer of k in NGLC(V )(W ),
which are described below.
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1.F.1. Grading, C×-action. The algebra T(V ⊕ V ∗) ⋊W can be Z-graded in such
a way that the generators have the following degrees:

deg(y) = −1 if y ∈ V ,

deg(x) = 1 if x ∈ V ∗,

deg(w) = 0 if w ∈ W.

This descends to a Z-grading on Hk, because the defining relations (1.1) are ho-
mogeneous. Since the center of a graded algebra is always graded, the subalgebra
Zk is also Z-graded. So the Calogero–Moser space Zk inherits a regular C×-action.
Note also that, by definition, P = C[V ]W ⊗C[V ∗]W is clearly a graded subalgebra
of Zk.

1.F.2. Action of the normalizer. The group NGLC(V )(W ) acts on the set ℵ and so
on the space of parameters Cℵ. If τ ∈ NGLC(V )(W ), then τ induces an isomorphism
of algebras Hk −→ Hτ(k). So, if τ(k) = k, then it induces an action on the algebra
Hk (and so on its center Zk and on the Calogero–Moser space Zk).

Notation. From now on, and until the end of this paper, we fix a parameter
k ∈ Cℵ and a regular element τ of finite order of NGLC(V )(W ) such that τ(k) = k.

We denote by Zτ
k the variety of fixed points of τ in Zk, endowed with its reduced

structure. All the above constructions are τ -equivariant; for instance, the map
φk : Irr(W ) −→ ZC×

k is τ -equivariant.
Let us recall the following consequence [21, Prop. 3.5 and Thm. 4.2] of the above

hypothesis:

Theorem 1.2 (Springer). The group W τ acts as a reflection group on V τ and the
natural map V τ/W τ → (V/W )τ is an isomorphism of varieties.

Corollary 1.3. The natural map (V τreg × V ∗τ )/W τ → ((Vreg × V ∗)/W )τ is an
isomorphism of varieties.

Proof. Since W acts freely on the variety Vreg × V ∗, the quotient variety (Vreg ×
V ∗)/W is smooth. Consequently, the variety of fixed points ((Vreg × V ∗)/W )τ is
also smooth. Similarly, (V τreg × V ∗τ )/W τ is smooth. Since a bijective morphism
between smooth complex varieties is an isomorphism (by Zariski’s main theorem),
we only need to show that the above natural map is bijective.

First, if (v1, v
∗
1) and (v2, v

∗
2) are two elements of V τreg ×V ∗τ belonging to the same

W -orbit, there exists w ∈ W such that v2 = w(v1). Since v1 and v2 are τ -stable,
we also have τ(w)(v1) = v2, and so v1 = w−1τ(w)(v1). Since v1 ∈ Vreg, this forces
τ(w) = w, and the injectivity follows.

Now, if (v, v∗) ∈ Vreg ×V ∗ is such that its W -orbit is τ -stable, then the W -orbit
of v is τ -stable. So Theorem 1.2 shows that we may assume that τ(v) = v. The
hypothesis implies that there exists w ∈ W such that τ(v) = w(v) and τ(v∗) =
w(v∗). But τ(v) = v ∈ Vreg, so w = 1. In particular, τ(v∗) = v∗, and the
surjectivity follows. □
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2. Irreducible component of maximal dimension

Let (Zk)reg denote the open subset Υ−1
k (Vreg/W × V ∗/W ). By [13, Prop. 4.11],

we have a C×-equivariant and τ -equivariant isomorphism
(Zk)reg ≃ (Vreg × V ∗)/W.

This shows that (Zk)reg is smooth and so (Zk)τreg is also smooth. By Corollary 1.3,
this implies that

(Zk)τreg ≃ (V τreg × V ∗τ )/W τ .

In particular, it is irreducible. We denote by (Zτ
k )max its closure; it is an irreducible

closed subvariety of Zτ
k .

Moreover, (Zk)τreg has dimension 2 dimV τ by Corollary 1.3. So dim Zτ
k ≥

2 dimV τ = dim(Zτ
k )max. But, on the other hand, Υk(Zτ

k ) ⊂ (V/W )τ × (V ∗/W )τ .
Since Υk is a finite morphism, we get from Theorem 1.2 that dim Zτ

k ≤ 2 dimV τ .
Hence

dim Zτ
k = dim(Zτ

k )max = 2 dimV τ .

This shows that (Zτ
k )max is an irreducible component of maximal dimension of Zτ

k

and that
Υk((Zτ

k )max) = (V/W )τ × (V ∗/W )τ . (2.1)

Proposition 2.1. The closed subvariety (Zτ
k )max of Zτ

k is the unique irreducible
component of maximal dimension.

Proof. Let X be an irreducible component of Zτ
k of dimension 2 dimV τ . Since

Υk is finite, the image Υk(X ) is closed in V/W × V ∗/W , irreducible of dimension
2 dim(V τ ) and contained in (V/W )τ × (V ∗/W )τ . By Theorem 1.2, we get that
Υk(X ) = (V/W )τ × (V ∗/W )τ .

Let U = Υ−1
k (Vreg/W × V ∗/W ) ∩ X . Then U is a non-empty open subset

of X ; since X is irreducible, this forces U to have dimension 2 dim(V τ ). But U
is contained in (Zk)τreg, which is irreducible of the same dimension, so the closure
of U contains (Zk)τreg. This proves that X = (Zτ

k )max. □

It is natural to ask which C×-fixed points of Zk belong to (Zτ
k )max. Inspired by

the representation theory of finite reductive groups (see [11] and [10, Rem. 4.21]),
we propose an answer to this question in terms of the character table of the finite
group W ⟨τ⟩ (see [4, Ex. 12.9] for some explanations). We first need some notation.

If χ ∈ Irr(W ), we denote by Eχ a CW -module affording the character χ. If
moreover χ is τ -stable, we fix a structure of CW ⟨τ⟩-module on Eχ extending the
structure of CW -module, and we denote by χ̃ its associated irreducible character
of W ⟨τ⟩. Note that the real number |χ̃(τ)|2 does not depend on the choice of χ̃.

Conjecture 2.2. Recall that τ is regular. Let p ∈ ZC×

k be such that τ(p) = p.
Then p belongs to (Zτ

k )max if and only if
∑
χ∈Fτ

p
|χ̃(τ)|2 ̸= 0.

Remark 2.3. Let F be a τ -stable Calogero–Moser family. Then F contains a
unique irreducible character χF with minimal b-invariant [6, Thm. 7.4.1], where
the b-invariant of an irreducible character χ is the minimal natural number j such
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that χ occurs in the j-th symmetric power of the natural representation V of W .
From this characterization, we see that χF is τ -stable. In particular, any τ -stable
Calogero–Moser family contains at least one τ -stable character.

In general, we are only able to prove the “if” part of Conjecture 2.2.
Theorem 2.4. Recall that τ is regular. Let p ∈ ZC×

k be such that τ(p) = p. If∑
χ∈Fτ

p
|χ̃(τ)|2 ̸= 0, then p belongs to (Zτ

k )max.

The next two sections are devoted to the proof of Theorem 2.4.

3. Verma modules

3.A. Definition. Recall that C[V ] ⋊W is a subalgebra of Hk (it is the image of
1 ⊗CW ⊗C[V ] by the PBW-decomposition 1.B). If E is a CW -module, we denote
by E# the (C[V ∗]⋊W )-module extending E by letting any element f ∈ C[V ∗] act
by multiplication by f(0). If χ ∈ Irr(W ), we define an Hk-module ∆(χ) as follows:

∆(χ) = Hk ⊗C[V ∗]⋊W E#
χ .

Then ∆(χ) is called a Verma module of Hk (see [6, §5.4.A]; in this reference, ∆(χ) is
denoted by ∆(E#

χ )). Let Hreg
k denote the localization of Hk at Preg = C[Vreg/W ]⊗

C[V ∗/W ]. By [13, Prop. 4.11], we have an isomorphism C[Vreg × V ∗] ⋊ W ≃
Hreg
k . We denote by ∆reg(χ) the localization of ∆(χ) at Hreg

k . So, by restriction
to C[Vreg × V ∗], the localized Verma module ∆reg(χ) might be viewed as a W -
equivariant coherent sheaf on Vreg ×V ∗. We also view e∆(χ) as a coherent sheaf on
Zk, so that e∆reg(χ) may be viewed as a coherent sheaf on (Vreg×V ∗)/W . If p ∈ Zk
(or if (v, v∗) ∈ Vreg × V ∗), we denote by e∆(χ)p (respectively e∆(χ)W ·(v,v∗) =
e∆reg(χ)W ·(v,v∗), respectively ∆reg(χ)v,v∗) the restriction of e∆(χ) (respectively of
e∆(χ) or e∆reg(χ), respectively ∆reg(χ)) at the point p (respectively W · (v, v∗) ∈
(Vreg × V ∗)/W ≃ (Zk)reg, respectively (v, v∗)). It follows from the definition that
the support of e∆(χ) is contained in Υ−1

k (V/W × 0), and recall that, through the
isomorphism Zreg

k ≃ (Vreg ×V ∗)/W , Υ−1
k (Vreg/W × 0) is not necessarily contained

in (Vreg × {0})/W .

Lemma 3.1. Let χ ∈ Irr(W ) and let p ∈ ZC×

k . Then e∆(χ)p ̸= 0 if and only if
χ ∈ Fp.
Proof. Let p0 denote the maximal ideal of the algebra P = C[P] consisting of
functions which vanish at 0. Then ∆(χ)/p0∆(χ) is a representation of the restricted
rational Cherednik algebra Hk/p0Hk which coincides with the baby Verma module
defined by Gordon [16, §4.2]. As ZC×

k = Υ−1
k (0), the result follows from the very

definition of Calogero–Moser families in terms of baby Verma modules and the fact
that it is equivalent to the definition given in §1.D. □

3.B. Bialynicki–Birula decomposition. We denote by Zatt
k the attracting set

of Zk for the action of C×, namely
Zatt
k = {p ∈ Zk | lim

ξ→0
ξp exists}.

Recall from [6, Chap. 9] the following facts.
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Proposition 3.2. With the above notation, we have:
(a) The map lim : Zatt

k −→ ZC×

k , p 7→ limξ→0
ξp is a morphism of varieties.

(b) Zatt
k = Υ−1

k (V/W × {0}).
(c) If I is an irreducible component of Zatt

k , then I is C×-stable and Υk(I) =
V/W × {0} and lim(I) is a single point.

(d) If χ ∈ Irr(W ), then the support of e∆(χ) is a union of irreducible compo-
nents of Zatt

k .
(e) If I is an irreducible component of Zatt

k , then there exists χ ∈ Irr(W ) such
that the support of e∆(χ) contains I.

Proof. (a) is classical (see, for instance, [6, §9.1]). For (b), see [6, Lem. 9.3.2]. (c) is
explained at the end of [6, §9.3]. For (d) and (e), see [6, (8.1.3) and Prop. 9.3.3]. □

We characterize points of ZC×

k belonging to (Zτ
k )max in terms of Verma modules:

Lemma 3.3. Let p ∈ ZC×

k and assume that τ(p) = p. Then p ∈ (Zτ
k )max if and

only if there exist χ ∈ Fkp and (v, v∗) ∈ V τreg × V ∗τ such that e∆(χ)W ·(v,v∗) ̸= 0.

Proof. Let (Zτ
k )att

max denote the attracting set of (Zτ
k )max. Then (2.1) and Propo-

sition 3.2 (b) imply that Υk((Zτ
k )att

max) = (V/W )τ × {0}. Since Υk is a finite mor-
phism, the same arguments used in [6, Chap. 9] to prove Proposition 3.2 above
yields the following statements:

(a) The map lim : (Zτ
k )att

max −→ (Zτ
k )C×

max, p 7→ limξ→0
ξp is a morphism of

varieties.
(b) (Zτ

k )att
max = (Zτ

k )max ∩ Υ−1
k ((V/W )τ × {0}).

(c) If I is an irreducible component of (Zτ
k )att

max, then I is C×-stable and
Υk(I) = (V/W )τ × {0} and lim(I) is a single point.

Assume that p ∈ (Zτ
k )max. Let I be an irreducible component of (Zτ

k )att
max ∩

lim−1(p). Then I is contained in an irreducible component I ′ of (Zτ
k )att

max. Since
lim(I ′) is a single point by (c), we have lim(I ′) = {p} and so I = I ′. Still
by (c), this says that Υk(I) = (V/W )τ × {0}. So let q ∈ I be such that Υk(q) ∈
(Vreg/W )τ × {0}.

Now, let J be an irreducible component of Zatt
k containing I. By Proposi-

tion 3.2 (e), there exists χ ∈ Irr(W ) such that the support of e∆(χ) contains J . In
particular, e∆(χ)p ̸= 0 and so χ ∈ Fp by Lemma 3.1. But also e∆(χ)q ̸= 0. Since
q ∈ (Zτ

k )max and Υk(q) ∈ Vreg/W , it follows that there exists (v, v∗) ∈ V τreg × V ∗τ

such that e∆(χ)W ·(v,v∗) ̸= 0, as desired.
Conversely, assume that there exist both χ ∈ Fkp and (v, v∗) ∈ V τreg × V ∗τ such

that e∆(χ)W ·(v,v∗) ̸= 0. Let I be an irreducible component of Zatt
k contained in the

support of e∆(χ). Then p ∈ I and so p = limW ·(v, v∗). Since W ·(v, v∗) ∈ (Zτ
k )max

by the definition of (Zτ
k )max, this implies that p ∈ (Zτ

k )max, as desired. □

4. Gaudin algebra

4.A. Definition. We recall here the definition of Gaudin algebra [6, §8.3.B]. First,
let C[Vreg][W ] denote the group algebra of W over the algebra C[Vreg] (and not the
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semi-direct product C[Vreg] ⋊W ). For y ∈ V , let

Dk
y =

∑
s∈Ref(W )

ε(s)ck(s) ⟨y, αs⟩
αs

s ∈ C[Vreg][W ].

Now, let Gauk(W ) be the sub-C[Vreg]-algebra of C[Vreg][W ] generated by the Dk
y ’s

(where y runs over V ); it will be called the Gaudin algebra (with parameter k)
associated with W .

Let C(V ) denote the function field of V (which is the fraction field of C[V ] or
of C[Vreg]) and let C(V )Gauk(W ) denote the subalgebra C(V ) ⊗C[Vreg] Gauk(W ) of
the group algebra C(V )[W ]. Recall [6, §8.3.B] that

Gauk(W ) is a commutative algebra,

but that C(V )Gauk(W ) is generally non-split, as shown by the examples treated
in [2, §4] and [19].

4.B. Generalized eigenspaces. If v ∈ Vreg, we denote by Dk,v
y the specialization

of Dk
y at v, namely Dk,v

y is the element of the group algebra CW equal to

Dk,v
y =

∑
s∈Ref(W )

ε(s)ck(s) ⟨y, αs⟩
⟨v, αs⟩

s.

Now, if v∗ ∈ V ∗ and if M is a CW -module, we define Mk,v,v∗ to be the common
generalized eigenspace of the operators Dk,v

y for the eigenvalue ⟨y, v∗⟩ for y running
over V . Namely,

Mk,v,v∗
=

{
m ∈ M | ∀ y ∈ V, (Dk,v

y − ⟨y, v∗⟩ IdM )dim(M)(m) = 0
}
.

Then
M =

⊕
v∗∈V ∗

Mk,v,v∗
, (4.1)

since Gauk(W ) is commutative.

Lemma 4.1. Let χ ∈ Irr(W ) and let (v, v∗) ∈ Vreg × V ∗. Then the following are
equivalent:

(1) e∆(χ)W ·(v,v∗) ̸= 0.
(2) ∆reg(χ)v,v∗ ̸= 0.
(3) Ek,v,v

∗

χ ̸= 0.

Proof. The equivalence between (1) and (2) follows from the Morita equivalence
between C[Vreg ×V ∗]W and C[Vreg ×V ∗]⋊W proved in [6, Lem. 3.1.8 (b)]. Now, as
a (C[Vreg]⋊W )-module, ∆reg(χ) ≃ C[Vreg] ⊗Eχ, and the action of y ∈ V ⊂ C[V ∗]
is given by the operator −Dk

y ∈ C[Vreg][W ] (see [6, §8.3.B]). Now, ∆reg(χ)v,v∗ ≃ Eχ
as a C-vector space; on this vector space, the action of an element f ∈ C[Vreg] is
given by multiplication by f(v), while the action of an element y ∈ V is given by
the operator ⟨y, v∗⟩ IdEχ

−Dk,v
y (see [6, Thm. 4.1.7]). This shows the equivalence

between (2) and (3). □
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4.C. Proof of Theorem A (i.e., Theorem 2.4). Let χ ∈ Irr(W ) be τ -stable
and such that χ̃(τ) ̸= 0, and let v ∈ V τreg. By Lemmas 3.1 and 4.1, it is sufficient
to show that there exists v∗ ∈ V ∗τ such that Ek,v,v∗

χ ̸= 0.
For this, let E denote the set of v∗ ∈ V ∗ such that Ek,v,v∗

χ ̸= 0. Then it follows
from (4.1) that

(∗) Eχ =
⊕
v∗∈E

Ek,v,v
∗

χ .

Since τ(v) = v, we have

τDk,v
y =

∑
s∈Ref(W )

ε(s)ck(s) ⟨y, αs⟩
⟨v, αs⟩

τsτ−1 =
∑

s∈Ref(W )

ε(s)ck(s) ⟨y, τ−1(αs)⟩
⟨v, τ−1(αs)⟩

s = Dk,v
τ(y).

Consequently,
τEk,v,v

∗

χ = Ek,v,τ(v∗)
χ .

But χ̃(τ) = Tr(τ, Eχ) ̸= 0, so τ must fix at least one of the generalized eigenspaces
in the decomposition (∗). In other words, this implies that there exists v∗ ∈ E such
that τ(v∗) = v∗, as desired. The proof is complete. □

5. Complements: further conjectures, examples

5.A. Conjectures. The variety Zk is endowed with a Poisson structure [13, §1]
and so the variety of fixed points Zτ

k inherits a Poisson structure too, as well as all its
irreducible components. Recall from Springer’s Theorem 1.2 that W τ is a reflection
group for its action on V τ , so we can define a set of pairs ℵτ for the pair (V τ ,W τ ),
just as ℵ was defined for the pair (V,W ); and, for each parameter l ∈ Cℵτ , we can
define a Calogero–Moser space Zl(V τ ,W τ ). The following conjecture is a particular
case of [3, Conj. B] (see [3] for a discussion about the cases where this conjecture
is known to hold).

Conjecture 5.1. Recall that τ is regular. Then there exist a linear map λ : Cℵ →
Cℵτ and, for each k ∈ Cℵ, a C×-equivariant isomorphism of Poisson varieties

ιk : (Zτ
k )max

∼−→ Zλ(k)(V τ ,W τ ).

If the existence of such a C×-equivariant isomorphism

ιk : (Zτ
k )max

∼−→ Zλ(k)(V τ ,W τ )

is known, but it is not known whether it preserves the Poisson structure, then we
say that “Conjecture 5.1− holds”.

Assume now that Conjecture 5.1− holds and keep its notation. Then ιk restricts
to a map ιk : (Zk)C×

max
∼−→ Zλ(k)(V τ ,W τ )C× . If p ∈ Zλ(k)(V τ ,W τ )C× , we denote by

F
(τ)
ιk(p) the corresponding Calogero–Moser λ(k)-family of W τ . The next conjecture,

still inspired by the representation theory of finite reductive groups (see again [4,
Ex. 12.9] for some explanations), makes Conjecture B more precise:
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Conjecture 5.2. Recall that τ is regular and assume that Conjecture 5.1− holds.
If p ∈ (Zτ

k )C×

max, then ∑
χ∈Fτ

p

|χ̃(τ)|2 =
∑

ψ∈F
(τ)
ιk(p)

ψ(1)2.

Note that this last conjecture is compatible with the fact that∑
χ∈Irr(W )τ

|χ̃(τ)|2 = |W τ | =
∑

ψ∈Irr(W τ )

ψ(1)2,

where the first equality follows from the second orthogonality relation for characters
applied to W ⟨τ⟩. Indeed,

∑
θ∈Irr(W ⟨τ⟩) |θ(τ)|2 = |CW ⟨τ⟩(τ)| and θ(τ) ̸= 0 implies

that θ is an extension of a τ -invariant character χ of W by [18, Thm. 6.11]; the
equality then follows from the fact that |θ(τ)| depends only on χ and that there
are |W ⟨τ⟩|/|W | extensions of χ by [18, Cor. 6.17].

5.B. Roots of unity. We consider in this subsection a particular (but very im-
portant) case of the general situation studied in this paper. We fix a natural
number d ≥ 1 and a primitive d-th root of unity ζd. The group of d-th roots of
unity is denoted by µd. An element w ∈ W is called ζd-regular if the element
ζ−1
d w of NGLC(V )(W ) is regular. In other words, w is ζd-regular if and only if its
ζd-eigenspace meets Vreg. The existence of a ζd-regular element is not guaranteed;
we say that d is a regular number of W if such an element exists.

Hypothesis. We assume in this subsection that d is a regular number of W . We
denote by wd a ζd-regular element and we also set τd = ζ−1

d wd, so that τd is a
regular element of NGLC(V )(W ).

Recall from [21, Thm. 4.2 (iv)] that wd is uniquely defined up to conjugacy. Note
that

V τd = Ker(wd − ζd IdV ), W τd = CW (wd) and Zτd

k = Zµd

k .

Since τd induces an inner automorphism of W , all the irreducible characters are
τd-stable. Moreover, if χ ∈ Irr(W ), then χ̃(τd) = ξχ(wd) for some root of unity ξ,
so |χ̃(τd)|2 = |χ(wd)|2. This allows us to reformulate both Theorem A and Conjec-
ture B in this case.

Conjecture 5.3. Recall that d is a regular number. Let p ∈ ZC×

k . Then p belongs
to (Zµd

k )max if and only if
∑
χ∈Fp

|χ(wd)|2 ̸= 0.

Theorem 5.4. Recall that d is regular. Let p∈ ZC×

k be such that
∑
χ∈Fp

|χ(wd)|2 ̸= 0.
Then p belongs to (Zµd

k )max.

Example 5.5 (Symmetric group). We assume here that W = Sn acting on V =
Cn by permutation of the coordinates for some n ≥ 2. The canonical basis of Cn is
denoted by (y1, . . . , yn). Then there is a unique orbit of hyperplanes, that we denote
by Ω, and eΩ = 2. To avoid too easy cases, we also assume that kΩ,0 ̸= kΩ,1 (so that
Zk is smooth [13, Cor. 1.14]) and that d ≥ 2. Saying that d is a regular number is
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equivalent to saying that d divides n or n− 1. Therefore, we will denote by j the
unique element of {0, 1} such that d divides n− j, and we set r = (n− j)/d. Then
wd is the product of r disjoint cycles of length d, so one can choose, for instance,

wd = (1, 2, . . . , d)(d+ 1, d+ 2, . . . , 2d) · · · ((r − 1)d+ 1, (r − 1)d+ 2, . . . , rd).

Then V τd is r-dimensional, with basis (v1, . . . , vr) where va =
∑d
b=1 ζ

−b
d e(a−1)d+b

and the group CW (wd) ≃ G(d, 1, r) acts “naturally” as a reflection group on V τd =⊕r
a=1 Cva.
We also need some combinatorics. We denote by Part(n) (resp. Partd(r)) the

set of partitions of n (resp. of d-partitions of r). If λ ∈ Part(n), we denote by χλ
the irreducible character of Sn (with the convention of [15]: for instance, χn = 1
and χ1n = ε), by cord(λ) the d-core of λ, and by quod(λ) its d-quotient. We let
Part(n, d) denote the set of partitions of n whose d-core is the unique partition of
j ∈ {0, 1}. Then the map

quod : Part(n, d) −→ Partd(r)

is bijective. Finally, if µ ∈ Partd(r), we denote by χµ the associated irreducible
character of CW (wd) = G(d, 1, r) (with the convention of [14]). It follows from the
Murnaghan–Nakayama rule that

χλ(wd) ̸= 0 if and only if λ ∈ Part(n, d), (5.1)

and that
χλ(wd) = ±χquod(λ)(1) (5.2)

for all λ ∈ Part(n, d) (see, for instance, [9, p. 47]).
Now, the smoothness of Zk implies that the map φk : Irr(Sn) −→ ZC×

k is
bijective (so that Calogero–Moser k-families of Sn are singleton), and it follows
from the main theorem of [5] that Conjecture 5.1 holds (except that we do not
know if the isomorphism respects the Poisson structure), so that we have a C×-
equivariant isomorphism of varieties

ιk : (Zµd

k )max
∼−→ Zλ(k)(V τd , G(d, 1, r))

for some explicit λ(k) ∈ Cℵτd . Moreover, Zλ(k)(V τd , G(d, 1, r)) is smooth so that
the map φτd

λ(k) : Irr(G(d, 1, r)) −→ Zλ(k)(V τd , G(d, 1, r))C× is bijective (that is,
Calogero–Moser λ(k)-families of G(d, 1, r) are singleton). Now, by [5, Thm. 4.21],
we have that

φk(χλ) ∈ (Zµd

k )max if and only if λ ∈ Part(n, d), (5.3)

and that
ιk(φk(χλ)) = φτd

λ(k)(χquod(λ)) (5.4)

for all λ ∈ Part(n, d). Then (5.1), (5.2), (5.3) and (5.4) show that Conjectures 5.3
and 5.2 hold for the symmetric group.
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