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REGULAR AUTOMORPHISMS
AND CALOGERO-MOSER FAMILIES

CEDRIC BONNAFE

ABSTRACT. We study the subvariety of fixed points of an automorphism of
a Calogero—Moser space induced by a regular element of finite order of the
normalizer of the associated complex reflection group W. We determine some
of (and conjecturally all) the C*-fixed points of its unique irreducible com-
ponent of maximal dimension in terms of the character table of W. This is
inspired by the mysterious relations between the geometry of Calogero-Moser
spaces and unipotent representations of finite reductive groups, which is the
theme of another paper [Pure Appl. Math. Q. 21 no. 1 (2025), 131-200].

INTRODUCTION

If G is a split reductive group over a finite field I, with g elements with Weyl
group W, Deligne and Lusztig [12] defined a particular class of irreducible charac-
ters of the finite group G = G(F,), called the unipotent characters of G. To W,
one can also associate a Calogero-Moser space Z at equal parameters, which is a
complex irreducible normal affine Poisson variety endowed with a C*-action [I3].
The main theme of a previous paper of the author [4] is the observation that many
aspects of the combinatorics of unipotent characters of G have a conjectural ana-
logue in the geometry of Z, thanks to the Poisson structure and the C*-action.
Here are two examples:

e Unipotent characters have been partitioned by Lusztig [20] into families
and it has been conjectured by Gordon-Martino [I7] that these families
are in bijection with C*-fixed points of Z. Note that this conjecture has
been proved in all cases except types Eg, E7 and FEg (see [17, [T} [7]).

e For d a natural number, Broué-Malle-Michel [9] defined a partition of
unipotent characters into d-Harish-Chandra series (generalizing the clas-
sical partition into Harish-Chandra series, which corresponds to the case
d = 1). This partition is conjecturally related to the stratification of Z#a
by symplectic leaves (here, u,; denotes the group of complex d-th roots of
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unity); the reader may find more details in [4, §12.C]. See [4, Part IV] for
a list of cases where this conjecture is proved.

In the second point, whenever d is a regular number in the sense of Springer [21],
it has been observed by Broué-Malle-Michel [I0, Rem. 4.21] that the families of
unipotent characters which meet the principal d-Harish-Chandra series are charac-
terized by a property involving character values of W (again, more details may be
found in [4 Ex. 12.9]). If one believes in the analogy between unipotent charac-
ters and geometry of Z, this suggests [4, Conj. 7.5] a conjectural characterization
of C*-fixed points meeting the unique irreducible component of Z#4 of maximal
dimension in terms of the character table of W. The proof of one direction of this
conjecture is the theme of the present paper.

Note that the conjecture [4, Conj. 7.5] involves only the Calogero—Moser space
and can be studied without any reference to unipotent characters. Moreover, since
Calogero—Moser spaces are defined for any finite complex reflection group (and not
only for Weyl groups) and for a bigger family of parameters, this conjecture is
somewhat more general than what has been explained above in this introduction,
which can be seen as a motivation for the results obtained here. Therefore, from
now on, we will work in this more general context of complex reflection groups. Let
V be a finite-dimensional complex vector space and let W be a finite subgroup of
GL¢ (V) generated by reflections (i.e., automorphisms of V' whose fixed points space
is an hyperplane). To some parameter k, Etingof and Ginzburg [13] associated a
normal irreducible affine complex variety Z, = Z;(V,W) called a (generalized)
Calogero—Moser space. If T is an element of finite order of the normalizer of W in
GL¢(V) stabilizing the parameter k, it induces an automorphism of Zj.

We denote by Vic, the open subset of V' on which W acts freely, and we assume
that Vi, # @ (then 7 is called regular). In this case, there exists a unique irre-
ducible component (Z])max of Z] of maximal dimension (as it will be explained
in Section . Recall that Zj is endowed with a C*-action and that we have a
surjective map Irr(W) — Z£~ defined by Gordon [I6] (induced by the action of
the center of a rational Cherednik algebra on baby Verma modules) whose fibers are
called the Calogero—Moser k-families of W. Here, Irr(W) is the set of irreducible
characters of W. If p € Z}gx, we denote by §, its associated Calogero—Moser
k-family. It is a natural question to wonder which C*-fixed points of Z] belong
t0 (Z])max- The aim of this note is to provide a partial answer in terms of the
character table of W:

Theorem A. Assume that Vo, # @. Let p € Z5° be such that T(p) = p. If there

reg

exists x in §j, such that X(7) # 0, then p € (Z] )max-

In this statement, if x is a 7-stable irreducible character of W, we denote by x an
extension of x to the finite group W(r) (see [I8] Cor. 11.22] for the existence of ¥):
note that |¥(7)|? does not depend on the choice of ¥ (see [18], Cor. 6.17]). Our proof
of Theorem A makes an extensive use of the Gaudin operators introduced in [6),
§8.3.B]: whenever x(7) # 0, the decomposition of a representation affording x with
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respect to generalized eigenspaces of the Gaudin operators allows us to construct
a T-fixed point p’ in (Z])max such that p = lime_,0 & - p'.
We conjecture that the converse of Theorem A holds [4, Conj. 7.5]:

Conjecture B. Assume that Vg, # @. Let p € Z}EX be such that T(p) = p and
P € (2] )max- Then there exists x in §}, such that X(1) # 0.

General notation. Throughout this paper, we will abbreviate ®¢ as ®, and all
varieties will be algebraic, complex, quasi-projective and reduced. If X is an affine
variety, we denote by C[X] its coordinate ring.

If X is a subset of a vector space V (or of its dual V*), and if T is a subgroup
of GL¢(V), we denote by I'x the pointwise stabilizer of X. If moreover I is finite,
we will identify (V1)* and (V*)'.

1. CALOGERO—MOSER SPACES AND FAMILIES

Hypothesis and notation. We fix in this paper a finite-dimensional complex
vector space V and a finite subgroup W of GL¢ (V). We set

Ref(W) ={s € W | codimc V* =1}
and we assume throughout this paper that
W = (Ref(W),

i.e., that W is a complex reflection group.

1.A. About W. Weset e : W — C*, w — det(w). We identify C[V] (resp. C[V*])
with the symmetric algebra S(V*) (resp. S(V)).
We denote by A the set of reflecting hyperplanes of W, namely

A={V®|seRef(W)}.

If H € A, we denote by ay an element of V* such that H = Ker(ag), and by a);
an element of V such that V = H @ Caj; and the line Cay, is Wy-stable. We set
exg = |Wx|. Note that Wy is cyclic of order ey and that Irr(Wg) = {Res%H el |
0 < j <e—1}. We denote by e ; the (central) primitive idempotent of CWy
associated with the character Res%H e~J, namely

EH; = 1 Z e(w)!w € CWg.
eH weWgy
If Q0 is a W-orbit of reflecting hyperplanes, we write eq for the common value of
all the ep, where H € Q. We denote by X the set of pairs (€2, j) where Q2 € A and
0 < j <eq—1. The vector space of families of complex numbers indexed by N will
be denoted by C¥; elements of C® will be called parameters. If k = (ka,j)(@,j)exr €
C¥, we define kg jforall H € Qand j € Z by ki ; = kqj,, where {1 is the W-orbit

of H and jj is the unique element of {0,1,...,emy — 1} such that j = jo mod eg.
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We denote by V,¢s the set of elements v of V' such that W, = 1. It is an open
subset of V', and recall from the Steinberg—Serre theorem [8, Thm. 4.7] that

Ve =V \ |J H

HeA

In particular, V;e, is a principal open affine subset of V' and

C[ reg 1/ H OéH

HeA

1.B. Rational Cherednik algebra at ¢t = 0. Let k € CX. We define the rational
Cherednik algebra Hy, (at t = 0) to be the quotient of the algebra T(V @ V*) x W
(the semi-direct product of the tensor algebra T(V @& V*) with the group W) by
the relations

[CC,ZU,] = [yay/] = 07
€eH— 1

Z Z ey kH] kH,j+1)<y;OéH> <0¢Ha >5H7j (1]_)

HEA j=0 (o am)

forall z, 2’ € V* y,y' € V. Here, (, ): V x V* — C is the standard pairing. The
first commutation relations imply that we have morphisms of algebras C[V] — Hy,
and C[V*] — Hj. Recall [I3, Thm. 1.3] that we have an isomorphism of C-vector
spaces

ClV]®@CW @ C[V*] — Hy
induced by multiplication (this is the so-called PBW-decomposition).

Remark 1.1. Let (In)qeca/w be a family of complex numbers and let & € C¥ be
defined by kglj = kq; + lo. Then Hy = Hj,. This means that there is no loss
of generality if we consider, for instance, only parameters k£ such that kg o = 0 for
all Q, or only parameters k such that koo + ko1 + - + kg,eq—1 = 0 for all Q (as
in [6]).

1.C. Calogero—Moser space. We denote by Zj the center of the algebra Hy; it
is well-known [I3, Theo 3.3 and Lem. 3.5] that Zj is an integral domain, which
is integrally closed. Moreover, it contains C[V]" and C[V*]" as subalgebras [I6,
Prop. 3.6]. So, by the PBW-decomposition, Zj contains P = C[V]" & C[V*]W
and it is a free P-module of rank |W| (see [I3] Prop. 4.15]). We denote by Zj
the affine algebraic variety whose ring of regular functions C[Z] is Zy: this is the
Calogero—Moser space associated with the datum (V, W, k). It is irreducible and
normal.

We set P = V/W x V* /W, so that C[P] = P and the inclusion P — Zj, induces

a morphism of varieties
Yi: 2, — P
which is finite and flat.
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1.D. Calogero—Moser families. Using the PBW-decomposition, we define a C-
linear map Q* : H;, — CW by

Q™ (fwg) = £(0)g(0)w

for all f € C[V], g € C[V*] and w € CW. This map is W-equivariant for the action
on both sides by conjugation, so it induces a well-defined C-linear map

QF .z, — z(Cw).

Recall from [6, Cor. 4.2.11] that QF is a morphism of algebras.

Calogero—Moser families were defined by Gordon using his theory of baby Verma
modules [16, §4.2 and §5.4]. We explain here an equivalent definition given in [0,
§7.2]. If x € Irr(W), we denote by ¢, : Z(CW) — C its central character (i.e.,
oy (2) = x(2)/x(1) is the scalar by which z acts on an irreducible representation
affording the character x). We say that two characters x and x’ belong to the same
Calogero—Moser k-family if ¢, o QF = By © QF.

In other words, the map @, oQF:Z, 5 Cisa morphism of algebras, so it might
be viewed as a point ¢k (x) of Zj, which is easily checked to be C*-fixed. This
defines a surjective map [16], §5.4]

o It (W) — Z,EX

whose fibers are the Calogero-Moser k-families. If p € Z}SX, we denote by §), the
corresponding Calogero—Moser k-family.

1.E. Alternative parameters. Let C denote the space of maps Ref(W) — C
which are constant on conjugacy classes of reflections. The element

Z Z (k,j — kg jy1)encn,;

(Qj)ER HER

of Z(CW) is supported only by reflections, so there exists a unique map ¢ € C
such that

SN (kuy—kujiencu; =Y (els) = Der(s)s.

(©2,5)EX HEQ s€Ref(W)

Then the map C® — C, k + ¢, is linear and surjective. With this notation, we
have

Y, 0g) - Oé;/,.’l?
= Y (els) — Dauls) L0005,
sEReE(W) (a3, )
for all y € V and x € V*. Here, oy = ays and o) = ay..
1.F. Actions on the Calogero—Moser space. The Calogero-Moser space Zj

is endowed with a C*-action and an action of the stabilizer of k in Ngr.(v)(W),
which are described below.
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1.F.1. Grading, C*-action. The algebra T(V @& V*) x W can be Z-graded in such
a way that the generators have the following degrees:

deg(y) =—-1 ifyeV,
deg(z) =1 ifx eV
deg(w) =0 ifweW.

This descends to a Z-grading on Hy, because the defining relations are ho-
mogeneous. Since the center of a graded algebra is always graded, the subalgebra
Z; is also Z-graded. So the Calogero-Moser space Zj, inherits a regular C*-action.
Note also that, by definition, P = C[V]" @ C[V*]" is clearly a graded subalgebra
of Zk.

1.F.2. Action of the normalizer. The group Ngy,.(v)(W) acts on the set X and so
on the space of parameters CX. If 7 € Ngr.(v)(W), then 7 induces an isomorphism
of algebras Hy, — H, (1. So, if 7(k) = k, then it induces an action on the algebra
H; (and so on its center Zj and on the Calogero-Moser space Zy).

Notation. From now on, and until the end of this paper, we fix a parameter
k € C® and a regular element 7 of finite order of Ngr,.(v)(W) such that 7(k) = k.

We denote by Z] the variety of fixed points of 7 in Zj,, endowed with its reduced
structure. All the above constructions are T-equivariant; for instance, the map
or : Irr(W) — Z£7" is T-equivariant.

Let us recall the following consequence [21], Prop. 3.5 and Thm. 4.2] of the above
hypothesis:

Theorem 1.2 (Springer). The group W7 acts as a reflection group on V™ and the
natural map V7 /W™ — (V/W)7 is an isomorphism of varieties.

Corollary 1.3. The natural map (Vi, X V*7)/WT — ((Vieg X V*)/W)7T is an

reg
isomorphism of varieties.

Proof. Since W acts freely on the variety Vieg x V*, the quotient variety (Vieg X
V*)/W is smooth. Consequently, the variety of fixed points ((Vieg x V*)/W)7 is
also smooth. Similarly, (Vj5g x V*7)/WT is smooth. Since a bijective morphism
between smooth complex varieties is an isomorphism (by Zariski’s main theorem),
we only need to show that the above natural map is bijective.

First, if (v1,v7) and (v2, v3) are two elements of V.7, x V*7 belonging to the same
W-orbit, there exists w € W such that vo = w(vy). Since v; and vy are T-stable,
we also have 7(w)(v1) = vg, and so v; = w7 (w)(v1). Since v1 € Vieg, this forces
7(w) = w, and the injectivity follows.

Now, if (v,v*) € Vieg x V* is such that its W-orbit is 7-stable, then the W-orbit
of v is 7-stable. So Theorem shows that we may assume that 7(v) = v. The
hypothesis implies that there exists w € W such that 7(v) = w(v) and 7(v*) =
w(v*). But 7(v) = v € Vieg, 50 w = 1. In particular, 7(v*) = v*, and the
surjectivity follows. O
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2. JRREDUCIBLE COMPONENT OF MAXIMAL DIMENSION

Let (2 )req denote the open subset Y, ' (Vieg/W x V*/W). By [13, Prop. 4.11],
we have a C*-equivariant and 7T-equivariant isomorphism

(Zk)reg = (Vreg x V*)/W.

This shows that (Z)reg is smooth and so (2 )], is also smooth. By Corollary
this implies that

(Zk)ieg = (Vigg x V) /W,
In particular, it is irreducible. We denote by (27 )max its closure; it is an irreducible
closed subvariety of Z7.

Moreover, (Z})f, has dimension 2dim V7" by Corollary So dim Z] >
2dim V" = dim(Z] )max. But, on the other hand, Y (Z]) C (V/W)™ x (V*/W)".
Since Y is a finite morphism, we get from Theorem @ that dim Z] < 2dim V7.
Hence

dim Z7 = dim(Z} )max = 2dim V7.
This shows that (Z])max is an irreducible component of maximal dimension of Z]
and that

Tr((Z0)max) = (V/W)T x (VZ /W)™ (2.1)

Proposition 2.1. The closed subvariety (Z] )max of ZJ is the unique irreducible
component of mazrimal dimension.

Proof. Let X be an irreducible component of Z of dimension 2dim V". Since
T}, is finite, the image YT (X) is closed in V/W x V* /W, irreducible of dimension
2dim(V7) and contained in (V/W)™ x (V*/W)7. By Theorem [1.2] we get that
Ti(X) = (V/W)" x (V*/W)T.

Let U = Y ' (Vieg/W x V*/W) N X. Then U is a non-empty open subset
of X; since X is irreducible, this forces U to have dimension 2dim(V7). But U
is contained in (2 )J.q, which is irreducible of the same dimension, so the closure

of U contains (Zj)l,,. This proves that X = (Z])max- O

reg*

It is natural to ask which C*-fixed points of Zj, belong to (Z] )max. Inspired by
the representation theory of finite reductive groups (see [1I] and [10, Rem. 4.21]),
we propose an answer to this question in terms of the character table of the finite
group W(r) (see [4, Ex. 12.9] for some explanations). We first need some notation.

If x € Irr(W), we denote by E, a CW-module affording the character x. If
moreover x is 7-stable, we fix a structure of CW(r)-module on E, extending the
structure of CIW-module, and we denote by x its associated irreducible character
of W(r). Note that the real number |{(7)|? does not depend on the choice of Y.

Conjecture 2.2. Recall that T is reqular. Let p € Z,(SX be such that T7(p) = p.
Then p belongs to (Z] )max if and only if 3, < |X(7)]? # 0.

Remark 2.3. Let § be a 7-stable Calogero-Moser family. Then § contains a
unique irreducible character xz with minimal b-invariant [6, Thm. 7.4.1], where
the b-invariant of an irreducible character y is the minimal natural number j such
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that x occurs in the j-th symmetric power of the natural representation V' of W.
From this characterization, we see that xz is 7-stable. In particular, any 7-stable
Calogero—Moser family contains at least one 7-stable character.

In general, we are only able to prove the “if” part of Conjecture [2.2

Theorem 2.4. Recall that T is reqular. Let p € Z}SX be such that T(p) = p. If
> et IX(T)|2 # 0, then p belongs to (Z])max-

The next two sections are devoted to the proof of Theorem [2.4]

3. VERMA MODULES

3.A. Definition. Recall that C[V] x W is a subalgebra of Hy, (it is the image of
1®CW @ C[V] by the PBW-decomposition [L.B). If E is a CW-module, we denote
by E# the (C[V*] x W)-module extending FE by letting any element f € C[V*] act
by multiplication by f(0). If x € Irr(W), we define an Hy-module A(y) as follows:
A(x) = Hi ®cpvuw EF.

Then A(y) is called a Verma module of Hy, (see [6l, §5.4.A]; in this reference, A(x) is
denoted by A(E¥)). Let H;"® denote the localization of Hy, at Preg = C[Vieg/W]®
C[v*/W]. By [13, Prop. 4.11], we have an isomorphism C[Vieg X V*| x W =~
H;™®. We denote by A™8(x) the localization of A(x) at H,;®. So, by restriction
to C[Vieg x V*], the localized Verma module A™&(y) might be viewed as a W-
equivariant coherent sheaf on Vg x V*. We also view eA(x) as a coherent sheaf on
2y, so that eA™8(x) may be viewed as a coherent sheaf on (Viee xV*)/W. If p € Z4,
(or if (v,v*) € Vieg x V), we denote by eA(x), (respectively eA(X)w.(v,p*) =
eA™E(X ). (v,0%), Tespectively ATE(x), ) the restriction of eA(x) (respectively of
eA(x) or eAr8(x), respectively A™8(y)) at the point p (respectively W - (v,v*) €
(Vieg X V*)/W 2 (Z})reg, respectively (v,v*)). It follows from the definition that
the support of eA(x) is contained in Y ' (V/W x 0), and recall that, through the
isomorphism 2, & (Vieg X V*)/W, Y1 (Vieg/W x 0) is not necessarily contained
in (Vieg x {0})/W.

Lemma 3.1. Let x € Irr(W) and let p € Z}SX. Then eA(x)p # 0 if and only if
X € Sp-

Proof. Let pp denote the maximal ideal of the algebra P = C[P] consisting of
functions which vanish at 0. Then A(x)/poA(x) is a representation of the restricted
rational Cherednik algebra Hy /poHj, which coincides with the baby Verma module
defined by Gordon [16, §4.2]. As ZE° = T (0), the result follows from the very

definition of Calogero—Moser families in terms of baby Verma modules and the fact
that it is equivalent to the definition given in O

3.B. Bialynicki-Birula decomposition. We denote by Z* the attracting set
of Zj, for the action of C*, namely

ZM = {p € 2 | lim *p exists}.
£—0

Recall from [6, Chap. 9] the following facts.
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Proposition 3.2. With the above notation, we have:

(a) The map lim : 22 — ZC° p s lime_,0 $p s a morphism of varieties.

(b) 23 = YL (V/W x {0}).

(¢) If T is an irreducible component of Z2**, then T is C*-stable and Yy (Z) =
V/W x {0} and lim(Z) is a single point.

(d) If x € Irx(W), then the support of eA(x) is a union of irreducible compo-
nents of Z2*.

(e) If T is an irreducible component of Z2*, then there exists x € Irr(W) such
that the support of eA(x) contains T.

Proof. (a) is classical (see, for instance, [6l, §9.1]). For (b), see [6], Lem. 9.3.2]. (c) is
explained at the end of [6], §9.3]. For (d) and (e), see [6], (8.1.3) and Prop. 9.3.3]. O

We characterize points of Z}EX belonging to (Z])max in terms of Verma modules:

Lemma 3.3. Let p € Z°° and assume that 7(p) = p. Then p € (Z])max if and
only if there exist x € §k and (v,v*) € Vii, x VT such that eA(X)w.(v,0+) # 0.

reg

Proof. Let (Z])2% denote the attracting set of (Z] )max. Then (2.1)) and Propo-

max

sition [3.2(b) imply that Yx((Z])2%,) = (V/W)™ x {0}. Since Y}, is a finite mor-
phism, the same arguments used in [6, Chap. 9] to prove Proposition above
yields the following statements:
(a) The map lim : (Z7)2% — (Z7)C. | p + limg_0%p is a morphism of
varieties.
(b) (ZD)2, = (Z])mee N T (V/W)T x {0}).
(c) If 7 is an irreducible component of (Z])2%  then Z is C*-stable and
Ti(Z) = (V/W)™ x {0} and lim(Z) is a single point.

Assume that p € (Z])max. Let Z be an irreducible component of (Z])2% N
lim~'(p). Then Z is contained in an irreducible component Z’ of (Z])2% . Since
lim(Z") is a single point by (c), we have lim(Z') = {p} and so Z = Z’. Still
by (c), this says that T,(Z) = (V/W)"™ x {0}. So let ¢ € Z be such that Yy(q) €
(Vieg/ W)™ x {0},

Now, let J be an irreducible component of Z2* containing Z. By Proposi-
tion [3.2](e), there exists x € Irr(W) such that the support of eA(x) contains J. In
particular, eA(x), # 0 and so x € §, by Lemma But also eA(x)q # 0. Since
q € (2] )max and Tx(q) € Vieg/W, it follows that there exists (v,v*) € Vi, x V*7
such that eA(X)w.(v,v+) # 0, as desired.

Conversely, assume that there exist both x € 3’; and (v,v*) € Vi, x V*7 such
that eA(X)w.(v,v+) # 0. Let Z be an irreducible component of Z2% contained in the
support of eA(x). Thenp € Z and so p = lim W- (v, v*). Since W-(v,v*) € (Z] )max
by the definition of (Z])max, this implies that p € (Z] )max, as desired. O

4. GAUDIN ALGEBRA

4.A. Definition. We recall here the definition of Gaudin algebra [0, §8.3.B]. First,
let C[Vieg][W] denote the group algebra of W over the algebra C[V,e| (and not the
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semi-direct product C[V;eg] x W). For y € V, let

Dk = Z E(S)Ck(s)ws € ClVieg][W].

Y g
s€Ref(W)

Now, let Gauy (W) be the sub-C[V;]-algebra of C[V;ee][W] generated by the D}’s
(where y runs over V); it will be called the Gaudin algebra (with parameter k)
associated with W.

Let C(V) denote the function field of V' (which is the fraction field of C[V] or
of C[Vieg]) and let C(V)Gaug (W) denote the subalgebra C(V') ®cyy,, ] Gaug (W) of
the group algebra C(V)[W]. Recall [0, §8.3.B] that

Gaug (W) is a commutative algebra,

but that C(V)Gauy (W) is generally non-split, as shown by the examples treated
in [2 §4] and [19].

4.B. Generalized eigenspaces. If v € V,¢g, we denote by D’;’“ the specialization
of Dlzj at v, namely D’;’” is the element of the group algebra CW equal to

D’y“’”: Z s(s)ck(s)ws.

s€Ref(W) (v, as)

Now, if v* € V* and if M is a CW-module, we define M*??" to be the common
generalized eigenspace of the operators DS’U for the eigenvalue (y,v*) for y running
over V. Namely,

ME = {me M |Vy eV, (DE = (y,v*) Idpy) ™M) (m) = 0}.

Then
M= M, (4.1)
VeV
since Gauy (W) is commutative.

Lemma 4.1. Let x € Irr(W) and let (v,v*) € Vieg X V*. Then the following are
equivalent:

(1) eAX)w - (v.07) # 0

(2) Areg( )v v 7 0.

(3) Bk 7é0,

Proof. The equivalence between (1) and (2) follows from the Morita equivalence
between C[V;eg X V*IW and C[Vieg X V*] x W proved in [6, Lem. 3.1.8 (b)]. Now, as
a (C[Vieg] x W)-module, A™8(x) ~ C[V;eg] ® E, and the action of y € V' C C[V*]
is given by the operator =Dk € C[Vieg][W] (see [6, §8.3.B]). Now, ATE(x)y,» ~ By
as a C-vector space; on this vector space, the action of an element f € C[V,eg] is
given by multiplication by f(v), while the action of an element y € V is given by
the operator (y,v*)Idg, —Dp" (see [6, Thm. 4.1.7]). This shows the equivalence
between (2) and (3). O
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4.C. Proof of Theorem A (i.e., Theorem [2.4). Let x € Irr(W) be 7-stable
and such that x(7) # 0, and let v € V7,. By Lemmas and it is sufficient

reg*
to show that there exists v* € V*7 such that EF" #£ 0.
For this, let £ denote the set of v* € V* such that E;?“’”* # 0. Then it follows

from (4.1 that
(%) E,= P EF

v*eE

Since 7(v) = v, we have

TDch,v — Z €(S)Ck($) <y7as>7_87_—1 — Z e(s)ck(s) <y77—_1(058)>5 :Dk,v )

—1 7(y)
s€Ref(W) { s€Ref(W) (v, 77 as)) !

Consequently,
T pk,ov" _ ko, (v)
Elvv = pher0),

But x(7) = Tr(7, Ey) # 0, so 7 must fix at least one of the generalized eigenspaces
in the decomposition (x). In other words, this implies that there exists v* € £ such
that 7(v*) = v*, as desired. The proof is complete. O

5. COMPLEMENTS: FURTHER CONJECTURES, EXAMPLES

5.A. Conjectures. The variety Z is endowed with a Poisson structure [I3], §1]
and so the variety of fixed points Z] inherits a Poisson structure too, as well as all its
irreducible components. Recall from Springer’s Theorem [I.2]that W7 is a reflection
group for its action on V7, so we can define a set of pairs R, for the pair (V7, WT),
just as X was defined for the pair (V, W); and, for each parameter I € C¥, we can
define a Calogero—Moser space Z;(V7™, WT). The following conjecture is a particular
case of [3, Conj. B] (see [3] for a discussion about the cases where this conjecture
is known to hold).

Conjecture 5.1. Recall that T is reqular. Then there exist a linear map X : C¥ —
C® and, for each k € CR, a C* -equivariant isomorphism of Poisson varieties

L - (Zg)max ;> Z)\(k)(VT,WT).
If the existence of such a C*-equivariant isomorphism
Lk - (Z,:)max L) Z)\(k)(VT,WT)

is known, but it is not known whether it preserves the Poisson structure, then we
say that “Conjecture holds”.

Assume now that Conjecture holds and keep its notation. Then ¢ restricts
toamap u, : (Z)S., — Zawy(VT, W) Ifp e Zywy(VT, WT)C", we denote by

max
Sizp) the corresponding Calogero-Moser A(k)-family of W7. The next conjecture,
still inspired by the representation theory of finite reductive groups (see again [4,

Ex. 12.9] for some explanations), makes Conjecture B more precise:
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Conjecture 5.2. Recall that T is regular and assume that Conjecture holds.

Ifpe (Zg)(g;w then
SMIREP= D> e

(S ()
XESE VES, (1)

Note that this last conjecture is compatible with the fact that

Yo R@OP=WTI= Y W)
XEIrr(W)7™ Yelrr(WT)
where the first equality follows from the second orthogonality relation for characters
applied to W(r). Indeed, 3 ycr v (ry) 10(7)]* = |Cw s (7)] and 0(7) # 0 implies
that 6 is an extension of a 7-invariant character x of W by [I8, Thm. 6.11]; the
equality then follows from the fact that |#(7)| depends only on x and that there
are |W(T)|/|W| extensions of x by [I8 Cor. 6.17].

5.B. Roots of unity. We consider in this subsection a particular (but very im-
portant) case of the general situation studied in this paper. We fix a natural
number d > 1 and a primitive d-th root of unity (4. The group of d-th roots of
unity is denoted by p,;. An element w € W is called (g-regular if the element
¢ tw of Ngr.(vy(W) is regular. In other words, w is (g-regular if and only if its
(q-eigenspace meets V. The existence of a (4-regular element is not guaranteed;
we say that d is a regular number of W if such an element exists.

Hypothesis. We assume in this subsection that d is a regular number of W. We
denote by wy a (4-regular element and we also set 74 = Cd_lwd, so that 74 is a
regular element of Ngr.(v)(W).

Recall from [21], Thm. 4.2 (iv)] that w, is uniquely defined up to conjugacy. Note
that

V7T = Ker(wd — Cd Idv), WTd = CW (wd) and Z]:d = le:d.

Since 74 induces an inner automorphism of W, all the irreducible characters are
Ta-stable. Moreover, if x € Irr(W), then x(74) = Ex(wq) for some root of unity &,
50 |X(7a)|? = |x(wq)|?. This allows us to reformulate both Theorem A and Conjec-
ture B in this case.

Conjecture 5.3. Recall that d is a reqular number. Let p € Z,(CCX . Then p belongs
to (ng)max if and only if ersp Ix(wq)|? # 0.

Theorem 5.4. Recall that d is regular. Let p € Z5 ™ be such that D oxes, Ix(waq)|? # 0.
Then p belongs to (ng)max.

Example 5.5 (Symmetric group). We assume here that W = &,, acting on V' =
C™ by permutation of the coordinates for some n > 2. The canonical basis of C™ is
denoted by (y1, ..., yn). Then there is a unique orbit of hyperplanes, that we denote
by €, and eq = 2. To avoid too easy cases, we also assume that ko o # ko1 (so that
Zy, is smooth [I3] Cor. 1.14]) and that d > 2. Saying that d is a regular number is
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equivalent to saying that d divides n or n — 1. Therefore, we will denote by j the
unique element of {0, 1} such that d divides n — j, and we set r = (n — j)/d. Then
wg is the product of r disjoint cycles of length d, so one can choose, for instance,

wa=(1,2,....d)d+1,d+2,....2d) - (r = 1)d+1,(r — 1)d +2,...,rd).

Then V7 is r-dimensional, with basis (v1,...,v,) where v, = Zzzl C(;be(a,l)d%
and the group Cw (wq) ~ G(d, 1,r) acts “naturally” as a reflection group on V7 =
Da—1 Cva.

We also need some combinatorics. We denote by Part(n) (resp. Part?(r)) the
set of partitions of n (resp. of d-partitions of r). If A € Part(n), we denote by xx
the irreducible character of &,, (with the convention of [I5]: for instance, x, =1
and x1n = €), by corg(A) the d-core of A, and by quo,()) its d-quotient. We let
Part(n, d) denote the set of partitions of n whose d-core is the unique partition of
j € {0,1}. Then the map

quoy : Part(n, d) —s Part®(r)

is bijective. Finally, if u € Part?(r), we denote by Xu the associated irreducible
character of Cy (wq) = G(d, 1,r) (with the convention of [14]). It follows from the
Murnaghan—Nakayama rule that

Xxa(wg) #0 if and only if X € Part(n,d), (5.1)

and that
Xa(wa) = inuod(A)(l) (5.2)

for all A € Part(n,d) (see, for instance, [9, p. 47]).

Now, the smoothness of Zj implies that the map ¢ : Irr(&,) — Z,(CCX is
bijective (so that Calogero-Moser k-families of &,, are singleton), and it follows
from the main theorem of [5] that Conjecture holds (except that we do not
know if the isomorphism respects the Poisson structure), so that we have a C*-
equivariant isomorphism of varieties

L © (Z]l;d)max L) ZA(k) (VTd, G(d, 1,7"))

for some explicit A(k) € CY¥wa. Moreover, Zyy(VT@,G(d, 1,7)) is smooth so that
the map @K‘Zk) : Irr(G(d, 1,r)) — ZA(k)(V”,G(d,1,7“))CX is bijective (that is,
Calogero-Moser A(k)-families of G(d, 1,) are singleton). Now, by [5, Thm. 4.21],
we have that

0r(X2) € (ZF'")max  if and only if X € Part(n, d), (5.3)

and that
uk (e (XA)) = 30y (Xquo, () (5.4)
for all A € Part(n,d). Then , , and show that Conjectures

and [5.2 hold for the symmetric group.
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