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GRADED ALMOST VALUATION RINGS

FATIMA ZAHRA GUISSI, NAJIB MAHDOU, UNSAL TEKIR, AND SUAT KOC

ABSTRACT. Let R = ®aeF R, be a commutative ring graded by an arbitrary
torsionless monoid I'. We say that R is a graded almost valuation ring (gr AV-
ring) if for every two homogeneous elements a, b of R, there exists a positive
integer n such that either a™ divides ™ (in R) or b™ divides a™. In this paper,
we introduce and study the graded version of the almost valuation ring which
is a generalization of gr-AVD to the context of arbitrary I'-graded rings (with
zero-divisors). Next, we study the possible transfer of this property to the
graded trivial ring extension A x E. Our aim is to provide examples of new
classes of I'-graded rings satisfying the above mentioned property.

1. INTRODUCTION

Throughout this paper, all rings are assumed to be commutative with identity
and all modules are nonzero unitary, and I" will denote a torsionless grading monoid
(that is, a commutative, cancellative monoid and the quotient group of T, (T') =
{a —b|a,beT} is a torsion-free abelian group).

In [], Anderson and Zafrullah introduced and studied the notion of an almost
valuation domain (in short, an AVD) and an almost Bezout domain (in short, an
AB-domain) which are generalizations of valuation domain and Bezout domain,
respectively. An integral domain R with quotient field K is called an almost val-
uation domain if for every nonzero x € K, there exists an integer n > 1 such
that either ™ € R or z7" € R. Among other things, they proved that the in-
tegral closure of an almost valuation domain is a valuation domain. The notion
of gr-AVDs was recentely introduced by Bakkari, Mahdou and Riffi in [8] as fol-
lows. Let R = @, Ra be a graded integral domain and H be the set of nonzero
homogeneous elements of R. We say that R is a graded almost valuation domain
(in short, a gr-AVDs) if for every nonzero homogeneous element @ € Ry, there
exists an integer n = n(x) > 1 with 2™ or =" € R; equivalently, for all nonzero
homogeneous elements a,b € R, there exists an integer n = n(a,b) > 1 with a™ | b"
or b" | a™ in R. Tt is clear that any gr-valuation domain is a gr-AVD; the proof of
[8, Theorem 5.6] showed that if R is a gr-AVD, then R (the integral closure of R)
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is a gr-valuation domain. In [I0] and [I5], a generalization of AVDs to the context
of arbitrary rings was considered as follows. A ring R is called an almost valuation
ring (in short, an AV-ring) if, for any two elements a and b in R, there exists a
positive integer n such that either o™ divides b (in R) or b™ divides a™. Clearly,
any valuation ring is an AV-ring; the converse fails [I5, Examples 2.3]. However,
Proposition 2.2 in [I0] showed that any AV-ring is quasi-local with linearly ordered
prime ideals.

An integral domain R is an AB-domain if for a,b € R\ {0} there is n such that
(a™,b™) is principal. The notion of almost Bezout domains runs along lines some-
what similar to those of Bezout domains (i.e., every two generated, equivalently,
every finitely generated, ideal is principal). In [5], Anderson, Knopp, and Lewin
continued the study of almost Bezout domains, and after observing that each al-
most Bezout domain is nearly Bezout, they used the construction K + X L[X] to
disprove the converse. In [I5], the generalization of the almost Bezout domains
to arbitrary commutative rings (with zero-divisors) is considered as follows: R is
called an almost Bezout ring (AB-ring for short) if, for any two elements a and b
in R, there exists a positive integer n such that the ideal (a™,d") is principal.

Our aims is to generalize the concepts of AV-rings and AB-rings to the context
of arbitrary I'-graded rings (with zero-divisors); and then completely transfer these
notions to the graded trivial ring extension A x FE.

Note that the valuation in the context of rings (with zero-divisors) is defined in
two different ways which are not equivalent. Following [I4], we say that a ring R is
a valuation ring if, for any nonzero elements a,b € R, either Ra C Rb or Rb C aR;
In contrast, Huckaba’s definition of a valuation ring [9] adds the requirement that
at least one of these elements be regular. Any “valuation ring” (in our sense) is,
without a doubt, a valuation ring in the sense of [9], but not conversely. This
serves as a primary justification for beginning our paper, after recalling some basic
background in Section 2 that will be needed in the present work, with a brief
section (Section 3) in which we attempt to explain the distinction between the two
definitions and their relation with the almost valuation ring.

In Section 4, we introduce the notion of graded almost-valuation rings (gr AV-
rings). Among other things, we show that a nontrivially graded ring is never an
AV-ring (Proposition 4.3). It is clear that any gr-valuation ring is a gr AV-ring
(Proposition ; Examples and show that the converse fails; but a gr AV-
ring R = @, . Ro must have a unique maximal homogeneous ideal (Corollary [4.7)).
Also, we characterize the trivial ring extension to be gr-AV ring when it is given a
trivial graduation by Zs (Proposition . As an immediate application of this,
Example [£:26] shows the failure of Bakkari, Mahdou and Riffi’s theorem on the
integral closure of a gr-AVD beyond the context of graded integral domains. Then
we study the possible transfer of this generalized property for the graded trivial
ring extension (A x E). A generalization of the notion of an almost Bezout ring
(AB ring) to the context of arbitrary I'-graded rings brings this section to close,
in which we study the possible transfer of this generalized property to the graded

Rev. Un. Mat. Argentina, Vol. 68, No. 2 (2025)



GRADED ALMOST VALUATION RINGS 537

trivial ring extensions. For the main transfer result in this paper, see Theorems [1.21]
and

As we proceed to study the above-mentioned classes of graded rings, the reader
may find it helpful to keep in mind the implications shown in the following figure,
which are obtained from the results of this paper and are not reversible.

Valuation ring

4/\

Almost valuation ring gr-valuation ring

\/

gr-almost valuation ring

}

gr-quasi-local ring with linearly ordered prime homogeneous ideals

Let A be a ring and F be an A-module. Then the ring A x E with coordinate-
wise addition and multiplication given by (a1, e1) (az,es) = (ajaz, ajes + ageq) is
a ring with unity (1,0) (even R-algebra) called idealization of E or the trivial ring
extension of A by E. Note that A naturally embeds into A x E by a — (a,0). If
N is a submodule of F, then 0 x N is an ideal of A x F and 0 X F is a nilpotent
ideal of A x E of index 2. It is well known that I x N is an ideal of A x F if and
only if I is an ideal of R and N is a submodule of F such that IE C N, cf. [3|
Theorem 3.1].

Let ' be a commutative monoid. Suppose that A = @ . Ao is a I'-graded
ring and E = @ . Fo a I'-graded A-module. Then A x E is a I-graded ring
with (A X E)y = Ay @ E, for every a € T (cf. [6, Proposition 2]). Consequently,
h(A X E) =Uger(A x E),.

2. PRELIMINARIES

This section presents some basic properties of graded rings and modules used in
what follows. Let I' be a torsionless grading monoid (written additively), with an
identity element denoted by 0, and the quotient group of ', (I') = {a —b| a,b € T'}
is a torsion-free abelian group. It is well known that a cancellative monoid is
torsionless if and only if can be given a total order compatible with the monoid
operation [I7, p. 123].

Recall that a (not necessarily unital) ring R is called a I'-graded ring, or simply
a graded ring, if R = ®7€F R, each R, is an additive subgroup of R and R, Rs C
Ryis for all 7,0 € I'. The set h(R) = U, Ry is called the set of homogeneous
elements of R. The nonzero elements of R, are called homogeneous of degree ~y
and we write deg(r) =~ if r € R,\{0}. We call the set

Fr={yeT|R,#0}
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the support of R. We say R has a trivial grading, or R is concentrated in degree
zero if the support of R is the trivial group, i.e., Ry = R and R, = 0 for v € T'\{0}.
Clearly Ry is a subring of R (intuitively 1 € Ry) and every R, is an Rgp-module.
Note that every unit of R is homogeneous.

By a graded R-module F, we mean an R-module graded by T, that is, a direct
sum of subgroups E, of E such that R,Eg C Eq4p for every o, 3 € I'. Let R and
R’ be two graded rings. Then a ring homomorphism f : R — R’ is called graded if
f(Ro) C R, forall @ €T'. Let I be an ideal of R. Then I is called a homogeneous
ideal of R if one of the following equivalent conditions hold: (i) I = @,y Lo,
where I, = INR, forall « € T, and (ii) a = an; + oy + - -+ a4, € I implies that
aq; € I, where a,, € R,,. Similarly, a submodule IV of M is called a homogeneous
submodule if and only if N = @aer N, where N, = N N M, for all o € T if and
only if m = my, +Ma, +- - -+mq, € N implies that m,, € N, where my, € M,,. If
I is a homogeneous ideal of a graded ring R = @ Ra, then R/1 = @ (R/I)a
is a graded ring, where (R/I), := (Rq +I)/I. A homogeneous ideal P of R is
called a prime homogeneous ideal (gr-prime) if P is a proper homogeneous ideal
of R with the property that a,b € h(R) and ab € P implies either a« € P or b € P.
A homogeneous ideal M of R is called a maximal homogeneous ideal (gr-maximal)
if it is maximal among proper homogeneous ideals; equivalently, if every nonzero
homogeneous element of R/M is invertible.

A graded ring is said to be graded quasi local (gr-quasi local) if it has a unique
maximal homogeneous (gr-maximal) ideal and a graded ring A is called a graded-
field (gr-field) if every nonzero homogeneous element of R is invertible. Clearly,
every field is a graded field, however, the converse is not true in general, see [16),
p. 46].

Let Ry and Ry be two graded rings. Then R = Ry X Rs is a graded ring with
homogeneous elements h(R) = (J,cp Ra, where Ry = (Ry1), % (R2), foralla €T
It is well known that an ideal of Ry X Ry is of the form I; x I5 for some ideals Iy
of Ry and Is of Ry. Also it is easily seen that I; x I3 is a homogeneous ideal of
Ry X Ry if and only if I1, I, are homogeneous ideals of R; and Rg, respectively.

Let R be a graded ring, and let tq(R) denote the total ring of quotients of R and
H the saturated multiplicative set of regular homogeneous elements of R. Then,
by extending some definitions to the case where rings are with zero divisors, Ry,
called the homogeneous total ring of quotients of R, is a ring graded by (I'), where

r
(Ru), = {; | » € Rg, s a regular element of R, and § — v = a} .

If R is a graded integral domain (an integral domain graded by I'), then Ry is
called the homogeneous quotient field of R. Clearly, every nonzero homogeneous
element of Ry is invertible and (Rp), is a field.

We will be using the following definition (which agrees with the classical one if R
is a graded integral domain). A graded R-module F is said to be a torsion R-graded
module if, for each homogeneous e € E, there exists a € R\ {0} such that ae = 0.
We will also use the following standard definitions. A regular homogeneous element
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of a graded ring R is a non-zero-divisor homogeneous element; a graded R-module
E is gr-divisible if, for each homogeneous e € E and each regular homogeneous
element a of R there exists f € E such that e = af; a graded A-module E is
a torsion-free (graded A-module) if whenever a € h(A) and e € E with ae = 0
implies that either ¢ = 0 or e = 0. Lastly, as usual, for any I'-graded ring A,
h-Spec(R) denotes the set of prime homogeneous ideals of R, h-Z(R) denotes the
set of all homogeneous zero-divisors of R and h-Reg(R) denotes the set of regular
homogeneous elements of R.

3. SOME REMARKS OF VALUATION-LIKE PROPERTIES

Recall from the introduction that a ring R is called an almost valuation ring
if, for any two elements a and b in R, there exists a positive integer n such that
either a™ divides b” (in R) or b™ divides a”. Following [I], a ring R is said to be
a valuation ring if, for all a,b € R such that {a,b} ¢ Z(R), either Ra C Rb or
Rb C Ra as defined in Huckaba’s book [9]; but it is not equivalent to the definition
of “valuation ring” used by Kaplansky [14] p. 35], as Kaplansky’s definition omits
the above stipulation that {a,b} ¢ Z(R). It is clear that any “valuation ring” in
the sense of [I4] is an AV-ring, but a “valuation ring” in the sense of [1] is not
necessary an AV-ring, as shown by the following example.

Recall that a ring R is said to be a total quotient ring if each regular element of
R is unit (each nonunit element of R is in Z(R)). Obviously, every total quotient
ring is a valuation ring in the sense of [11 [9].

Example 3.1. Let A be a non-AV-ring. Set M = @, ., A/I, where A is the
set of all ideals of A. Let x be a nonunit element of A, then Iy = zA € A. So
x(rr);ea = 0, where 77 = 0 for every I # Iy and r7, = 1+ Iy, hence x € Z(M).
Consequently, Z(M) = A\ U(A). Consider the trivial ring extension R = A x M.
So Z(R) = {(a,m) | a is a nonunit element of A,m € M} by [0, Theorem 25.3].
Therefore R is a valuation ring in the sense of [I] since R is a total quotient ring;
but according to [I5, Theorem 2.1] R is not a AV-ring since A is not.

Note that any valuation ring in the sense of Kaplansky [14] is a valuation ring in
the sense of [I, [9]; but the converse is not true in general as the following example
clarifies.

Example 3.2. Consider a non-valuation ring A in the sense of [14] (for instance,
a non-quasi-local ring). Set R = A x M the trivial ring extension of A by M with
M = @;cn A/I. Then R is a valuation ring in the sense of [I] (cf. [Example )
but not a valuation ring in the sense of [I4], since A is not [I3, Lemma 2.2].

Remark 3.3. Note that the concept of valuation rings in the both senses coincide
in the case where the ring A is an integral domain. Then let F' be a finite field
and X an indeterminate over F. Put H := F(X), the quotient field of F[X], and
let Y be an analytic indeterminate over H. Set D := H + Y3H|[[Y]]. Then by [T,
Example 2.20] D is an almost valuation domain, which is not a valuation domain.
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Hence the valuation ring in Huckaba’s sense [I] is unrelated to the almost valu-
ation ring. We can clarify the meaning of each implication by the following figure;
none of the implications are reversible:

Valuation ring in [I4]

/\

Almost valuation ring Valuation ring in [I]

4. MAIN RESULTS

There are two reasons why we begin by extending the definiton of a valuation ring
in Kaplansy’s sense [I4, p. 35] to the case of I'-graded rings. First, Definition
will be our framework of this study (unless otherwise stated, a gr-valuation ring is
as defined there). Second, Definition Will be used in a proof later in this paper.
That theme will motivate the choice of the contexts studied in our later results,
which, for the most part, seek to identify situations admitting positive transfer
results for the other graded ring-theoretic properties being considered here.

Definition 4.1. A graded ring R = @, Ra is said to be a graded valuation
ring (gr-valuation ring) if every homogeneous elements a,b € R, either aR C bR
or bR C aR.

Obviously, every valuation graded ring is a gr-valuation ring. The converse is
not true in general, as shown by the following construction.

Example 4.2. Let R be a gr-valuation ring. Pick a homogeneous element x € R
with deg(z) # 0, then (1 4+ z + 23)R is not comparable with (1 + 2%)R under
inclusion. Hence R is a gr-valuation ring which is not valuation.

We say R is a graded almost valuation ring (gr AV-ring) if for every homogeneous
elements a, b € R, there exists an integer n > 1 such that a” R C 0" Ror b"R C a"R;
equivalently, if for any two homogeneous elements a,b € R, there exists an integer n
such that a™ divides b™ or b™ divides a™. Obviously, the concepts of “gr AV-rings”
and “AV-rings” coincide when the ring is trivially graded. We next clarify the
situation for nontrivially graded rings.

Proposition 4.3. Let R = @ Ra be a nontrivially graded ring. Then R is
never an AV-ring. In particular, if R is a nontrivially graded AV-ring, then R is
never an AV -ring.

Proof. Choose a nonzero homogeneous element x of R with a nonzero degree. Since
R is nontrivially graded, then 1+ 22 + 23 and z + 22 are nonhomogeneous elements
of R and so are nonunits of R. Therefore R is not quasi-local. Hence, by [10]
Proposition 2.2], R is not a AV-ring, as desired. O

The following result is straightforward.
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Proposition 4.4. Every gr-valuation ring R = @ e Ra is a gr-AV ring.

The converse of Proposition [£4] fails. The obvious example is a nonvaluation
AV-ring [10, Example 2.5]; also, we can quote the failure of Anderson—Zafrullah’s
theorem beyond the context of integral domains [I5, Example 2.3] which are triv-
ially graded; for nontrivially graded examples see Examples [£.17}, [£.25] and [4.26]

Proposition 4.5. Let R be a gr AV-ring and I be a homogeneous ideal of R.
Then R/I is a gr AV-ring. In particular, if D is a gr-AVD and I is a non-prime
homogeneous ideal of D then D/I is a gr AV-ring with nonzero zero-divisors.

Proof. Put R := R/I. Let z,y be two homogeneous elements in R/I. Pick two
homogeneous elements a,b € R such that x =a+ I and y = b+ I. Since R is a gr
AV-ring, there exists an integer n > 1 such that either a” R C 0" R or "R C a"R.
If a®R C "R, then

"R = (a"+1)(R/I)= (a"R+1)/I C (0"R+1)/I =y"R.
Similarly, if "R C @™ R, then y”ﬁ C 2"R. The proof is complete. O

Recall that for a proper homogeneous ideal I of a graded ring R, the graded
radical of I will be designated by Gr(I) = {z = >_ 24 € R : for each g € I, there
exists ng, € N such that z4? € I'}. It is straightforward to see that Gr(I) is always a
homogeneous ideal of R. Note that, if  is a homogeneous element, then z € Gr(I)
if and only if ™ € I for some positive integer n (see [18]). Now, we determine the
gr-almost valuation ring in terms of graded radical ideals.

Proposition 4.6. Let R = @, Ra be a gr AV-ring. Then I C Gr(J) or J C
Gr(I), for every homogeneous ideals I and J in R. In particular, the graded radical
ideals of R are linearly ordered.

Proof. Assume that R is a gr AV-ring. Let I and J be two homogeneous ideals of R.
If I ¢ Gr(J) and J € Gr(I), then there exist homogeneous elements y € I\ Gr(.J)
and z € J\ Gr([I) respectively. Since R is a gr AV-ring, there exist a positive integer
n such that either ™ | y™ or y™ | ™. We may assume, without loss of generality,
that ™ | y™. Then y™ = ra™ for some r € R, so y™ € J. Consequently, y € Gr(J),
which is a contradiction. Hence I C Gr(J) or J C Gr(I). O

The following result is an immediate corollary of Proposition [4.6]

Corollary 4.7. Let R be a gr AV-ring. Then the prime homogeneous ideals of R
are linearly ordered. In particular, R has a unique mazimal homogeneous ideal.

Recall that an overring of a ring R is a subring of the total quotient ring of
R that contains R. An overring T' of R is called a homogeneous overring of R
if T C Ry and T = @,y (T N (Ru)a); that is T is a graded subring of Rp.
Clearly, for any homogeneous ideal I of R, the subset (I :I)={x € Ry | «I C I}
is a homogeneous overring.

Proposition 4.8. Let R = @ cp Ra be a gr AV-ring and T' be a homogeneous
overring of R. Then T is a gr AV-ring.
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Proof. Let « and y be two homogeneous elements of T. Then = a/s and y = b/t
for some homogeneous a,b € R and regular homogeneous elements s, € R. Since
R is a gr AV-ring, there exists an integer n > 1 such that (at)"R C (bs)"R or
(bs)"R C (at)™R. It follows that there is a r € R such that (at)" = (bs)™r or
(bs)™ = (at)™r, and so z™ = (a/s)" = (b/t)"(r/1) = y"™(r/1) or y™ = x2"™(r/1).
Therefore, 2™T C y™T or y™I' C 2™T, which leads to the fact that T is a gr
AV-ring. O

We next give an example of a gr AV-ring for the reader’s convenience.

Example 4.9. Let R = @ Ra be a graded ring in which every homogeneous
element is either a unit or nilpotent. Then R is a gr AV-ring. In particular, if we
consider the graded trivial ring extension R = K x E with K is a field and F is
an K-vector space graded by Zy via Ry = K x 0 and Ry =0 x E. Then R is a gr
AV-ring.

Recall from [4, p. 288] that an extension R C T of a ring is said to be a root
extension of R if, for every « € T, there exists an integer n > 1 such that z" €
R. Analogously, we can define this notion in the setting of I'-graded rings as
follows. Let T'= @, T be a graded ring and R a homogeneous subring of T'.
Then the extension R C T is called a graded root extension (gr-root extension)
if for every homogeneous element = € T, there exists an integer n > 1 such that
z" € R. Obviously, if R C T is a root extension, then it is a gr-root extension;
the converse is not true in general: the example is given by the polynomial rings
R := K[X] C LIX] =: T, where K C L are finite fields and R, T are Z-graded
with deg (aX™) = n for every 0 # a € L and n € Z (cf. [2, p. 550]). The following
theorem characterizes gr-AV rings (cf. [I0, Theorem 3.4]).

Theorem 4.10. Let R = @
homogeneous ideal M. Set

aer Ba be a graded quasi-local ring with mazimal

Rady (M) = {x: Ya,€V|VgeTl,In, € N:ay? EM},
ger
where V' is a gr AV-homogeneous overring of R such that M is a homogeneous
ideal of V' and Rady (M) is the mazimal homogeneous ideal of V. Then R is a gr
AV-ring if and only if V is a gr-root extension of R.

Proof. If V.= R, then the assertions are clear in this case. Hence, we may assume
that V' # R and R is a gr AV-ring. Pick a homogeneous element z, € V\R. Then
zgy = a/b for some homogeneous a, b € R, where b is a regular homogeneous element
and deg(a) — deg(b) = g. If z, € Rady (M), then xj; € M C R for some n > 1.
Now, assume that x4 ¢ Rady (M). Since Rady (M) is the maximal homogeneous
ideal of V', x4 is a unit of V', and so a is a regular homogeneous element of R. Since
R is a gr AV-ring, there exists an integer n > 1 such that a” R C b"Ror b"R C a"R.
In the first case, if a”R C "R, then zy € R. If ;™ € M, then x;l € Rady (M),
which is a contradiction. Hence z /™ is a unit of R, and so xg € R. Therefore V' is
a gr-root extension of R.
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Conversely, assume that V' is a gr-root extension of R and a, b are homogeneous
elements of R. Since V is a graded almost valuation ring, there is an n > 1 such
that a™V C b"V or b"V C a™V. Assume that ¢V C b™V for some n > 1. Then
there exists y € V such that a™ = b™y, from which it is easy to check that y is
homogeneous in V. Since V is a gr-root extension of R, there is an m > 1 such
that y™ € R, and so a™™ = b™"y™ € b™"R. Hence, we get a”"R C b™"R, and
consequently R is a graded almost valuation ring. O

Let R C S be an extension of graded rings. It is obvious that h-Reg(S) N R C
h-Reg(R). However, the reverse inequality need not hold. Thus, it is not required
that h-Reg(S) N R = h-Reg(R). (To put it another way, it is not necessary that S
is a torsion-free graded R-module, in the usual sense of the term). This equality
is frequently desired because it is equivalent to the statement that the universal
mapping property of graded rings of fractions allows the inclusion map R < Sy to
extend to a (unique, necessarily injective) graded ring homomorphism Ry — S,
in which case we use that injection to view Ry C Spy. It is natural to wonder if
there are relevant kinds of base graded rings R and graded ring extensions R C S
that admit an embedding of Ry into Sy in this way. We begin with a closely
similar result, following the next useful remark.

Remark 4.11. A homogeneous element = € h-Reg(R) if and only if r = 0 implies
that » = 0 for every homogeneous element r € R.

Proof. If € h-Reg(R), then naturally xzr = 0 implies that » = 0 for every ho-
mogeneous element r € R. Conversely, assume that if zr = 0, then r = 0 for
every homogeneous element r € R. Let r = der Ty € R such that xr = 0, then
(D ger Tg) = 2ger ¥rg = 0, which implies that ary = 0 for every g € I' and so all
rg = 0. Consequently, r = 0; that is, 2 € h-Reg(R). O

Lemma 4.12. Let R C S be a gr-root extension of rings with S (and hence R)
being a gr-reduced ring. Then h-Reg(S)N R = h-Reg(R) and Ry C Sy is a gr-root
extension.

Proof. For the first assertion, we need only show that if x € h-Reg(R), then
x € h-Reg(S). Suppose that this fails, by Remark we may pick a nonzero
homogeneous element y € S, such that xy = 0. Since R C S is a gr-root extension,
there exists an integer n > 1 such that ™ € R. Then 2"y" = (zy)” = 0. As
h-Reg(R) is a multiplicatively closed set, 2™ € h-Reg(R), and so y™ = 0. Since S is
gr-reduced, y = 0, the desired contradiction. This completes the proof of the first
assertion.

In light of the first assertion, it follows from the above comments that we may
view Ry C Sp. It remains only to show that this is a gr-root extension. Given a
homogeneous u € Sy, we must find an integer £ > 1 such that u* € Ry. Write
u = a/z, with a € h(S) and z € h-Reg(S). Since R C S is a root extension,
there exist integers n > 1 and m > 1 such that a™ € R and z™ € R. Note that
(a™)™ € R™ = R. Moreover, since h-Reg(S) is a multiplicatively closed set, 2™ and
(2™)" are elements of h-Reg(S) (and of R). Consequently, by the first assertion,
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(2™)" € h-Reg(R). Since
(@)
(Zm)”

it follows that u™™ € Rpg. Therefore, taking k := nm completes the proof. O

ESH?

While going further into the “gr-root extension” hypothesis, we next continue
the project of generalizing some ring-theoretic observations and results from [IT]
and [10] to the graded ring-theoretic context.

Theorem 4.13. The following statements hold.

(1) Let R C S be a gr-root extension of rings. Then R is a gr AV-ring if and
only if S is a gr AV-ring.

(2) Let R C S be a gr-root extension of rings. Then the following conditions
are equivalent:
(a) R is a gr AV-ring;
(b) S is a gr AV-ring;
(¢) T is a gr AV-ring for each graded ring T such that RCT C S.
If, in addition, S is a gr-reduced ring, then the above conditions (a)—(c) are
equivalent to:
(d) T is a gr AV-ring, for each graded ring T' such that RC T C Sg.

Proof. (1) Consider two nonzero homogeneous elements z,y € S. As RC Sis a
gr-root extension, there exists an integer n > 1 such that ™, y™ € R. Since R is a
gr AV-ring, there exists an integer m > 1 such that either ™™ divides y™™ in R
or y™ divides ™ in R. Therefore, either 2" divides y™ in S or y™™ divides
2™ in S. Thus, S is a gr AV-ring. Conversely, consider two nonzero homogeneous
elements x,y € R. Then z,y € S. Since S is a gr AV-ring, there exists a positive
integer k such that either z* = ay” or y* = ba* for some elements a,b € S (i.e, a,b
are homogeneous in ). Since R C S is a gr-root extension, there exists a positive
integer n such that ™, b™ € R. Hence, either zF" = a™y*" or y** = b"2*". Since
a™, b" € R, this completes the proof that R is a gr AV-ring.

(2) For any graded rings extensions R C A C B C S, it is clear that the graded
ring extension A C B inherits the “gr-root extension” property from R C S. Hence,
the equivalences (a) < (b) < (c) follow from (a) and (b).

Next, assume that S is gr-reduced. Then by Lemma m (and the discussion
preceding it), we have (R C)Ry C Sy. Since (d) = (c) trivially, it will suffice to
show that (b)=-(d).

Assume that S is a gr AV-ring (and that S is gr-reduced). Our task is to
show that if 7" is a graded ring such that R C 7' C Sy, then T is a gr AV-
ring. To that end, consider two nonzero homogeneous elements x,y € T. Then
z,y € Sy. As Sy inherits the “gr AV-ring” property from S by Proposition
there exists an integer n > 1 and a, 8 € Sy (which are homogeneous) such that
either x™ = ay™ or y" = Bz™. Without loss of generality, we assume that =" = ay™.
Since Ry C Sy is a gr-root extension by Lemma [£.12] there exists an integer
m > 1 such that o™ € Ry. Thus, o™ = ¢/d € Ry, for some homogeneous
elements ¢ € R and d € h-Reg(R). As S is a gr AV-ring, there exist homogeneous
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u,v € S and an integer k& > 1 such that either c* = ud* or d* = vc*. Again
as R C S is a gr-root extension, there exists a positive integer p such that uP,
vP € R C T. Therefore, either ™™ P = yPy"mkp or ymmkp — ypgprmkp  (The
handling of the latter possibility involved a somewhat subtle additional use of
Lemma In detail, if d* = vc¥, one obtains z"™FP = y"™mkP /yP en route to
showing that y™™*P = ¢Px"™kP and this use of “fractional” notation is legitimate
since vP € h-Reg(S) N R = h-Reg(R), the underlying point being that vc* = d¥ €
h-Reg(R) C h-Reg(S) ensures that v is an element of the multiplicatively closed
set h-Reg(S).) Thus, either z"*PT C y"mkPT or ynmkPT C g"™*PT. This proves
that T is a gr AV-ring. The proof is complete. t

Example 4.14. Let R be a graded integral domain but not a gr AV-domain; it is
nonetheless the case that S = Ry is the homogeneous quotient field of R is a gr AV-
domain. Thus, the equivalence (a) <> (b) in Theorem [£.13)(2) cannot be expected
to hold for an arbitrary graded extension of domains (let alone an arbitrary pair
of graded rings) R C S. What led to that equivalence holding in Theorem [4.13](2)
was the assumption that R C S is a gr-root extension.

Remark 4.15. Note that for a ring A and an A-module E, the trivial ring exten-
sion R = A x E is naturally graded via N where the subgroups are defined, in [3],
as follows: Ry = Ax 0, Ry = 0x E and R, = 0 for n > 2, which can simply be
viewed as a Za-grading since (0 x E)? = 0.

The following proposition characterizes when R = A x E is a gr-AV ring if R is
trivially graded.

Proposition 4.16. With the notation of Remark let A be a ring, E an
A-module, and the trivial ring extension R=A X E. Then R=AX FE is a gr-AV
ring if and only if A is an AV-ring.

Proof. Let z,y € A; then (z,0), (y,0) are homogeneous elements (of a zero degree)
in R. Since R is a gr AV-ring, there exists a positive integer n such that (z,0)" €
R(y,0)" or (y,0)™ € R(x,0)™. Thus, 2™ € Ay™ or y™ € Az"™, and hence A is an
AV-ring. Conversely, let z and y be two homogeneous elements in R. Two cases
are then possible.

Case 1. deg(x) = deg(y) = 0. Then x = (a,0) and y = (b,0) for a,b € A. Since
A is an AV-ring, there exists a positive integer n such that either a™A C 0™ A or
b"A C a™A. We may assume, without loss of generality, that a™ A C 0™ A. Then
a™ = b"c for some ¢ € A, we have

z" = (a,0)" = (b"¢,0) = (¢,0)(b",0) = (¢,0)y" € y"R.

Case 2. Either deg(z) = 1 or deg(y) = 1. Without loss of generality, assume that
deg(z) = 1, then x = (0, ¢) for some e € E. So 22 = (0,0) € y?R, as desired. [

Using the notation of Remark [£.15)and Proposition [{.16] we can easily construct
straightforward examples of gr AV-rings which are not gr-valuation rings.
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Example 4.17. (1) Let A be an AV-ring which is not a valuation ring (for instance,
see Remark and M an A-module. Set R = A x M the trivial ring extension.
Then R is a gr-AV ring since A is a AV-ring by Proposition as A is not
valuation ring, there exist two elements z,y € A such that xA and yA are not
comparable under inclusion. Hence the two homogeneous ideals (z,0)R and (y,0)R
of R are not comparable under inclusion. Hence R is a gr AV-ring which is not a
gr-valuation ring.

(2) Let A be a valuation ring. Set R = A x M the trivial ring extension with
M = A® A. Then R is a gr AV-ring since A is an AV-ring. On the other hand,
the two homogeneous ideals (0,a)R and (0,b)R of R are not comparable under
inclusion with a = (0,1) and b = (1,0), consequently R is not a gr-valuation ring.

Beyond the trivial context of graded rings, the following theorem shows that,
for a useful kind of condition, one can characterize when the graded trivial ring
extension R = A X F is a gr-AV ring.

Theorem 4.18. Let A be a gr-AV ring and aE = a*E for all a € h(A). Then
R=AXFE is a gr-AV ring.

Proof. Let a:= (a,z) and g := (b,y) € h(R). Since a,b € h(A) and A is a gr-AV
ring, there exists n > 1 such that either Aa™ C Ab™ or Ab™ C Aa™. Without loss
of generality, we may assume that Aa™ C Ab™. Then we can write a™ = b™c for
some ¢ € h(A). Then we have a®" = b*"c?. Now we will show that Ra?" C R3?".
To show that the inclusion, we must show that (a, )" = (b,y)?"(c?,e) for some
e € A. First note that a?” 'E = a?"E and b*>"'E = b>"F since aF = ¢?>F and
bE = b’E. As 2na®" 'z = a®"2nx € a®>"'E = o¢®"E, we can find m € E such
that 2na® 'z = a®"m = b?"(c?>m). Similarly, we can write 2nb*"~1c2y = b?>"m’
for some m’ € E. This gives 2na®" 'z — 2nb*>"~1c?y = b*>"(c®>m — m’). Now, put
e = c*>m —m/ € E. Then we conclude that 2na®* 'z = 2nb*>" 1%y + b*"e and
thus (a,x)?" = (b,y)?>"(c?,e). This implies that R(a,x)?" C R(b,y)*" and hence
R is a gr-AV ring. O

Recall from [12] that an A-module E is said to be a von Neumann regular module
if for each m € E, Am = aE = a*E for some a € A. The authors in [I2] showed
that a finitely generated A-module E is a von Neumann regular module if and only
if aF = a?F for all a € A.

Corollary 4.19. Let E be a finitely generated von Neumann reqular module. Sup-
pose that A is a graded ring, E is a graded A-module and R = A X E is the graded
trivial extension. Then R is a gr-AV ring if and only if A is a gr-AV ring.

Proof. This follows from the previous theorem. (]

Recall from the introduction that a graded R-module F is gr-divisible if, for each
homogeneous e € E and each regular homogeneous element a of R, there exists
f € E such that af =e.

Proposition 4.20. Let E be a graded R-module. Then E is gr-divisible if and
only if, for every regular element a € h(R) and every e € E, the equation af = e
has a solution in E.
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Proof. If af = e has a solution f in E for each regular homogeneous element a € R
and each element e € FE, then FE is trivially a gr-divisible module. Conversely,
assume that F is gr-divisible and let a be a regular homogeneous element of R and
e= der ey € I; then there exists f;, € E such that af; = ¢, for each g € I', and
hence a der fq = e, as desired. O

Our new result studies the possible transfer of the gr AV-ring property between
a graded ring A and a graded trivial ring extension A x E. Recall from [I6] that
a graded ring R = P, Ra is said to be a crossed product if R, contains a unit
for every a € T'.

Theorem 4.21. Let A be a graded ring, E a nonzero graded A-module and R :=
A X E the graded trivial ring extension. Then:

(1) If R is a gr AV-ring, then so is A.

(2) Suppose that h-Z(A) = h-Nil(A) and E is a gr-divisible A-module. Then R
is a gr AV-ring if and only if A is a gr AV-ring.

(3) Suppose that Q C A, h-Z(A) = h-Nil(A) and E is a torsion-free graded
A-module. Further, assume that the grading monoid I' is a group and A
is a crossed product. Then R is an gr AV-ring if and only if A is a gr
AV-ring and FE is a gr divisible A-module.

(4) Let (A, M) be a graded quasi-local ring (with mazimal homogeneous ideal
M) and let E be a graded A-module such that M = Gr(Ann(E)). Then R
is a gr AV-ring if and only if A is a gr AV-ring.

Proof. (1) Let a,b be two homogeneous elements of A; then (a,0), (b,0) are homo-
geneous elements of R. Since R is a gr AV-ring, there exists a positive integer n
such that (a,0)" € R(b,0)" or (b,0)™ € R(a,0)". Thus, a™ € Ab™ or V" € Aa™,
and hence A is a gr AV-ring.

(2) Assume that h-Z(A) = h-Nil(A) and F is a gr divisible A-module. By (1), it
is only required to prove that if A is a gr AV-ring, then R is a gr AV-ring. Which
means that if o := (a,e) and § := (b, f) are homogeneous elements of R, then
there exists a positive integer n such that either o™ € "R or 8™ € a™R. Then
two cases are possible. In the first case, a and b are each regular homogeneous
elements of A. Then, since A is a gr AV-ring, there exists a positive integer n
such that either a”A C b"A or b"A C a"A. We may assume, without loss of
generality, that ™A C b™A. Then a™ = b"c for some ¢ € A. Since E is a gr-
divisible A-module and b" is a regular homogeneous element of A, there exists
d € F such that b"d = na" ‘e —ncb" ! f according to Proposition Therefore
(with a® := 1), we have

o™ = (a,e)" = (a",na"‘le) _ (bnc7 brd 4 ncb"_lf)
= (b”vnbnflf) (07 d) — Bn(c7 d) c 6"R7

as desired. In the remaining case, either a or b is a homogeneous zero-divisor in A.
Without loss of generality, a € h-Z(A) = h-Nil(4). Then there exists a positive
integer n such that a™ = 0. Hence ot = (a1, (n+ 1)a"¢) = (0,0) € "R,
as desired.
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(3) By (1) and (2), we need only prove that if R is a gr AV-ring (along with
the hypotheses that Q C A and E is a torsion-free graded A-module), then E is a
gr-divisible A-module; that is, if e is a nonzero homogeneous element of E and a is
a regular homogeneous element of A, then e € aF. Assume that deg(a) = hy and
deg(e) = ho. Since I is a group and A is crossed product, we can choose a unit
homogeneous element x € Ap,_p,. Note that (za,e) is a homogeneous element of
R with deg(za,e) = hg, since R is a gr AV-ring, there exists a positive integer n
such that either (a,0)" € (za,e)”R or (za,e)™ € (a,0)"R (keep in mind, (a,0) is a
homogeneous element for any homogeneous element a € A). There are two cases.
The first case, (a,0)" = (za,e)"(c, f) for some (¢, f) € R. Then (a,0)" = (a",0) =
(za,e)"(c, f) = (z"a™,nz""ta"" 16) (¢, /) = (x a™c,z"a" f +nz""ta""lce), so
that 2"a"c = a” and 2"a™f + nx" 'a® 'ce = 0. These facts can be rewritten
as a"(z"c — 1) = 0 and a"~*(z"af +nz"lce) = 0. Since @™ and a" ! are each
regular homogeneous elements of A (h-Reg(A) is a multiplicatively closed set), the
hypothesis that E is a torsion-free graded A-module gives first that 2c = 1 and
next that 2"af+nz" lce = 0. Multiplyingby n™! € Q C Aand (z=H)" ! € A4, we
get ce =n"1(—zaf) =a ( n- xf) € aF and so e € aE since c is unit, as desired.
In the remaining case, (za,e)” = (a,0)"(d, g) for some (d, g) € R. Simplifying and
equating second coordinates, we have a”g = nz™ 'a" " 'e. Asabove, the hypotheses
that F is a torsion-free graded A module and a is a regular homogeneous element
give that ag = nz™ 'e. It follows that e = a (nil(mfl)"’lg) € aF, as desired.

(4) By (1), we need only prove that if A is a gr AV-ring, along with the hypothesis
that M = Gr(Ann(E)), then Risa gr AV-ring. Let a = (a,€e), 8 = (b, f) € h(R). If
a is a homogeneous unit in A, then « is a homogeneous unit in R [6, Proposition 5],
so that B! = 8 € R = aR = o' R. Similarly, if b is a homogeneous unit in A, then
a' € B'R. Thus, we may assume, without loss of generality, that a € M and
b€ M. Then, since M C Gr(Ann(FE)), there exist positive integers m and p such
that @™ € Ann(FE) and b” € Ann(E). As A is a gr AV-ring, there exists a positive
integer n such that either a™ € ™A or " € a™A. We may assume, without loss
of generality, that a™ € b"A. Taking (mp + 1) powers and rewriting, we get
ampthn — pmp+hng. for some r € A. Then, since (mp + 1)n — 1 > max(m, p),

(merl (CL ) (mp+1)n _ (a(mp+1)n, (mp + 1)na(mp+1)n716)

a mp+1)n ) (b(mp-ﬁ-l)nr 0)

b mp+1)n mp+ 1)nb(mp+1)n 1f)( )

= (
(b mp+1)n mp + 1)le (mp+1)n— 1f)
= (
= (b, ) (r,0) € BTN R,

as desired. This completes the proof. O

If A is a graded integral domain, Theorem M(2) specializes to the following
result.
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Corollary 4.22. Let A be a graded integral domain, E a graded A-module, and
R = A FE the graded trivial ring extension.

(1) Assume that E is a gr-divisible A-module. Then R is a gr-AV ring if and
only if A is a gr AV-ring.

(2) Assume that E is a K-vector space, where K is the homogeneous quotient
field of fractions of A. Then R is a gr-AV ring if and only if A is a gr
AV-ring.

If (A, M) is a graded quasi-local ring and F a graded A-module, then the corol-
lary below gives another application of Theorem (4).

Corollary 4.23. Let (A, M) be a graded quasi-local ring, E a graded A-module,
and R := Ax FE the graded trivial ring extension. Assume that M™E = 0 for some
positive integer n > 1. Then R is a gr AV-ring if and only if A is a gr AV-ring.

Proof. Obviously, if £ = 0 then the assertions are clear since R = A. Thus,
we may henceforth assume, without loss of generality, that £ # 0. Then we
have Ann(E) # A. Let x be a homogeneous element of M; then 2™FE = 0, so
2™ € Ann(FE), which implies that € Gr(Ann(E)). Thus Gr(Ann(E)) = M, and
so an application of Theorem M(él) completes the proof. U

Remark 4.24. Let (4, M) be a graded quasi-local ring and M be the only prime
homogeneous ideal of A. Therefore M = h-Nil(A). Then, every homogeneous
element of A is unit or nilpotent. Hence, by Example A is always a gr AV-ring.
Note that, if A has a unique prime homogeneous ideal M, then A x E has also a
unique prime homogeneous ideal M x E. Therefore A x E is always a gr AV-ring.

Our next example illustrates part (2) of Theorem [4.21]

Example 4.25. Let D be a gr-AVD, K the homogeneous quotient field of D and
E =K x K. Then R:= D x E is a gr AV-ring which is neither a graded integral
domain nor a graded valuation ring.

Proof. By Corollary {22 R is a gr AV-ring. It is straightforward to see that R
is not a graded integral domain. On the other hand, the two homogeneous ideals
(0,z)R and (0,y)R of R are not comparable under inclusion with = (0,1) and
y = (1,0). Hence R is not a graded valuation ring. O

The integral closure of an almost valuation domain is a valuation domain, as
shown by Anderson and Zafrullah in [4, Theorem 5.6]; but beyond the context of
integral domains, N. Mahdou, A. Mimouni, and M. A. Salam Moutui explained in
[15] the failure of this characterization. Afterwards in [8, Theorem 2.3], C. Bakkari,
N. Mahdou, and A. Riffi provided an analog characterization of the gr-AVDs in
relation to the graded theory. The following example shows how Bakkari, Mahdou,
and Riffi’s theorem fails outside of the framework of graded integral domains.
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Example 4.26. Let (A, M) be a valuation domain which is not a field, and F a
non-simple A-module such that ME = 0. With the notation of Remark [£.15] let
R = A x E be the trivial ring extension, and R the integral closure of R in the
total quotient ring of R. Then we have as follows:

(1) Risagr AV-ring.
(2) R = R is not a gr-valuation ring.

Proof. (1) By Proposition since A is an AV-ring.

(2) First, it is straightforward to see that Z(R) = {(a, m) | a is a nonunit element
of A;m € E}. Hence R is a total quotient ring. Thus R is a fortiori integrally closed
in its total quotient ring. However, since A is not a field we conclude that M # 0,
E has a proper submodule N since it is not a simple module. Let a(#£ 0) € M, as
aFE =0, aR x N is a homogeneous ideal of R by [3| Theorem 3.3]. Therefore we
can see the two homogeneous ideals aR x N and 0 x E are not comparable and so
R is not a gr-valuation ring, as desired. O

Recall from the introduction that a ring R is called an almost Bezout ring if, for
any two elements a and b in R, there exists a positive integer n such that the ideal
(a™,b™) is principal. Now we introduce the notion of graded almost Bezout rings.

Definition 4.27. A graded ring R is said to be a graded almost Bezout ring (gr-
AB ring) if, for each a,b € h(R), there exist n > 1 and x € h(R) such that
(a™,b") = ().

Theorem 4.28. Let R be a graded integral domain. Then R is a gr-AV domain
if and only if R is a gr-AB domain and R is a gr-local ring.

Proof. (=): Suppose that R is a gr-AV domain. Then by Corollary (R, M)
is a gr-local ring. Let a,b € h(R). Then there exists n > 1 such that ™R C b"R
or b"R C a™R. This implies that (a™,b") = (b"™) or (a™,b") = (a™). Thus, R is a
gr-AB domain.

(«<): Let R be a gr-AB domain and R be a gr-local ring, where M is the unique
homogeneous maximal ideal of R. Let a,b € h(R). Since M is unique homogeneous
maximal ideal, we may assume that a,b € M. Since R is a gr-AB domain, there
exist n > 1 and = € h(R) such that (a”,b") = (z). Then there exist r, s € R such
that © = ra™ + sb™. Let r = > rg and s = > s,. Then x = Y a™rg + > b"s,.
Then there exists g, h € G such that x = rga” + s,b", where deg(z) = deg(rqya™) =
deg(spb™). Since a™ € (x), we can write a” = y(rqa™ + s,0™). As a™,x € h(R),
we may assume that y € h(R). Similarly, we can find z € h(R) such that b =
z(rga™ + spb™). This gives that rga™ + spb™ = (r4a™ + spb™)(rgy + spz). Since R
is a graded domain, we have ryy + spz = 1. Since y,z € h(R) and M is unique
homogeneous maximal ideal, either y or z is unit. Indeed, if y, z are nonunit, then
Y,z € M, which implies that r,y + sp2 = 1 € M, a contradiction. Without loss of
generality, we may assume that y is a unit of R. Since a” = y(rqa™ + spb™), we
have = rya™ + spb™ € y~'a™ € Ra™. This implies that b" € Rz C Ra™ and so
we have Rb™ C Ra™. Hence, R is a gr-AV domain. (]
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The following theorem studies the possible transfer of the gr-AB ring property
between a ring A and a graded trivial ring extension A x E.

Theorem 4.29. Let A be a graded ring, E a nonzero graded A-module and R =
A X E the graded trivial extension. Then:
(1) If R is a gr-AB ring, then so is A.
(2) Suppose that h-Z(A) = h-Nil(A) and FE is a gr-divisible A-module. Then R
is a gr-AB ring if and only if A is a gr-AB ring.
(3) Let (A, M) be a gr-local (with unique homogeneous mazximal ideal M of A)
and let M = Gr(Ann(E)). Then R is a gr-AB ring if and only if A is a
gr-AB ring.

Proof. (1) Assume that R is a gr-AB ring. Let a,b € h(A). Then « := (a,0) and
B = (b,0) are homogeneous in R. Then there exist a homogeneous z := (¢,y) €
h(R) and n > 1 such that R(a,0)" + R(b,0)" = Rx. This gives Aa™ + Ab™ = Az,
that is, A is a gr-AB ring.

(2) Suppose that h-Z(A) = h-Nil(A) and E is a gr-divisible module. If R is a
gr-AB ring, then by (1), A is a gr-AB ring. Now, suppose that A is a gr-AB ring
and (a,m), (b,m’) are homogeneous in R. Then a,b € h(A). Let a € h-Z(A). Then
there exists n > 1 such that @™ = 0. This gives (a, m)"*! = (a"!, (n + 1)a"m) =
(0,0), that is, R(a,m)"™* C R(b,m/)" ™. If b € h-Z(A), one can similarly show
that R(b,m’)"*! C R(a,m)™*! for some n > 1. Now, suppose that a,b are regular
homogeneous elements of A. Put a := (a,m) and S := (b,m’). We will show that
there exist n > 1 and v € h(R) such that Ra™ + RS™ = R~y. Since A is a gr-AB
ring, there exist n > 1 and « € h(A) such that Aa™ + Ab™ = Axz. This gives
x = ra™ + sb" for some r,;s € A. Let z € Ra™ + RB™. Then z = (ca™ + db", e)
for some ¢,d € A and e € E. Since ca™ + db"™ € Aa™ + A" = Az, we can write
ca™ + db™ = zy for some y € A. Note that z is a regular homogeneous element of
A since a” is regular and a™ € Aa™ C Azx. Since F is a gr-divisible module and x
is regular, by Proposition 4.18, there exists f € E such that e = zf. This gives
z = (ca™ 4+ db",e) = (zy,zf) = (2,0)(y, f). Then we have Ra™ + R5" C R(x,0).
Now, we will show that the reverse inclusion holds. Since E is gr-divisible and
a" is regular, we can write —nra” " 'm — nsb""'m’ = a"m’ for some m” € E.
Thus (z,0) = (ra™ + sb™,0) = (a,m)™(r,m"”) + (b,m’)(s,0), and this implies that
R(z,0) C Ra™ + RB™. Thus we have Ra™ + RS"™ = R(x,0), that is, R is a gr-AB
ring.

(3) We need only show that if (A, M) is a gr-local and gr-AB ring such that
Gr(Ann(FE)) = M, then Risagr-ABring. Let a := (a,2) and 8 := (b,y) € h(R). If
a or b is unit, then « or § is unit. Thus we have Ra+ RS = R(1,0), which completes
the proof. Now, assume that a,b are nonunits homogeneous elements of A, that
is, a,b € M = Gr(Ann(FE)). Then there exists n > 1 such that a"E = 0"E = 0.
Since a"™1, "t € h(A) and A is a gr-AB ring, there exists £ > 1 such that
A(a™tH)k + A(b"THF = Ac for some ¢ € h(A). On the other hand, note that

Ra(nJrl)k + RB(nJrl)k _ R(a(n+1)k’ (n + 1)ka(n+1)k71x)
+ ROUTVE (4 1) kb TRy
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= R(al"*V*,0) + RV, 0)
_ R(an+1’ O)k + R(anrl, O)k
Thus we have Ra("TDk 1 R3("1E — R(c 0), which completes the proof. O

If A is a graded integral domain and E is a gr-divisible A-module, Theo-
rem [1.29](2) specializes to the following result.

Corollary 4.30. Let A be a graded integral domain and E a gr-divisible A-module.
Then A X E is a gr-AB ring if and only if A is a gr-AB domain.
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