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GRADED ALMOST VALUATION RINGS

FATIMA ZAHRA GUISSI, NAJIB MAHDOU, ÜNSAL TEKİR, AND SUAT KOÇ

Abstract. Let R =
⊕

α∈Γ Rα be a commutative ring graded by an arbitrary
torsionless monoid Γ. We say that R is a graded almost valuation ring (gr AV-
ring) if for every two homogeneous elements a, b of R, there exists a positive
integer n such that either an divides bn (in R) or bn divides an. In this paper,
we introduce and study the graded version of the almost valuation ring which
is a generalization of gr-AVD to the context of arbitrary Γ-graded rings (with
zero-divisors). Next, we study the possible transfer of this property to the
graded trivial ring extension A ⋉ E. Our aim is to provide examples of new
classes of Γ-graded rings satisfying the above mentioned property.

1. Introduction

Throughout this paper, all rings are assumed to be commutative with identity
and all modules are nonzero unitary, and Γ will denote a torsionless grading monoid
(that is, a commutative, cancellative monoid and the quotient group of Γ, ⟨Γ⟩ =
{a − b | a, b ∈ Γ} is a torsion-free abelian group).

In [4], Anderson and Zafrullah introduced and studied the notion of an almost
valuation domain (in short, an AVD) and an almost Bezout domain (in short, an
AB-domain) which are generalizations of valuation domain and Bezout domain,
respectively. An integral domain R with quotient field K is called an almost val-
uation domain if for every nonzero x ∈ K, there exists an integer n ≥ 1 such
that either xn ∈ R or x−n ∈ R. Among other things, they proved that the in-
tegral closure of an almost valuation domain is a valuation domain. The notion
of gr-AVDs was recentely introduced by Bakkari, Mahdou and Riffi in [8] as fol-
lows. Let R =

⊕
α∈Γ Rα be a graded integral domain and H be the set of nonzero

homogeneous elements of R. We say that R is a graded almost valuation domain
(in short, a gr-AVDs) if for every nonzero homogeneous element x ∈ RH , there
exists an integer n = n(x) ≥ 1 with xn or x−n ∈ R; equivalently, for all nonzero
homogeneous elements a, b ∈ R, there exists an integer n = n(a, b) ≥ 1 with an | bn

or bn | an in R. It is clear that any gr-valuation domain is a gr-AVD; the proof of
[8, Theorem 5.6] showed that if R is a gr-AVD, then R̄ (the integral closure of R)
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is a gr-valuation domain. In [10] and [15], a generalization of AVDs to the context
of arbitrary rings was considered as follows. A ring R is called an almost valuation
ring (in short, an AV-ring) if, for any two elements a and b in R, there exists a
positive integer n such that either an divides bn (in R) or bn divides an. Clearly,
any valuation ring is an AV-ring; the converse fails [15, Examples 2.3]. However,
Proposition 2.2 in [10] showed that any AV-ring is quasi-local with linearly ordered
prime ideals.

An integral domain R is an AB-domain if for a, b ∈ R \ {0} there is n such that
(an, bn) is principal. The notion of almost Bezout domains runs along lines some-
what similar to those of Bezout domains (i.e., every two generated, equivalently,
every finitely generated, ideal is principal). In [5], Anderson, Knopp, and Lewin
continued the study of almost Bezout domains, and after observing that each al-
most Bezout domain is nearly Bezout, they used the construction K + XL[X] to
disprove the converse. In [15], the generalization of the almost Bezout domains
to arbitrary commutative rings (with zero-divisors) is considered as follows: R is
called an almost Bezout ring (AB-ring for short) if, for any two elements a and b
in R, there exists a positive integer n such that the ideal (an, bn) is principal.

Our aims is to generalize the concepts of AV-rings and AB-rings to the context
of arbitrary Γ-graded rings (with zero-divisors); and then completely transfer these
notions to the graded trivial ring extension A ⋉ E.

Note that the valuation in the context of rings (with zero-divisors) is defined in
two different ways which are not equivalent. Following [14], we say that a ring R is
a valuation ring if, for any nonzero elements a, b ∈ R, either Ra ⊆ Rb or Rb ⊆ aR;
In contrast, Huckaba’s definition of a valuation ring [9] adds the requirement that
at least one of these elements be regular. Any “valuation ring” (in our sense) is,
without a doubt, a valuation ring in the sense of [9], but not conversely. This
serves as a primary justification for beginning our paper, after recalling some basic
background in Section 2 that will be needed in the present work, with a brief
section (Section 3) in which we attempt to explain the distinction between the two
definitions and their relation with the almost valuation ring.

In Section 4, we introduce the notion of graded almost-valuation rings (gr AV-
rings). Among other things, we show that a nontrivially graded ring is never an
AV-ring (Proposition 4.3). It is clear that any gr-valuation ring is a gr AV-ring
(Proposition 4.4); Examples 4.4 and 4.17 show that the converse fails; but a gr AV-
ring R =

⊕
α∈Γ Rα must have a unique maximal homogeneous ideal (Corollary 4.7).

Also, we characterize the trivial ring extension to be gr-AV ring when it is given a
trivial graduation by Z2 (Proposition 4.16). As an immediate application of this,
Example 4.26 shows the failure of Bakkari, Mahdou and Riffi’s theorem on the
integral closure of a gr-AVD beyond the context of graded integral domains. Then
we study the possible transfer of this generalized property for the graded trivial
ring extension (A ⋉ E). A generalization of the notion of an almost Bezout ring
(AB ring) to the context of arbitrary Γ-graded rings brings this section to close,
in which we study the possible transfer of this generalized property to the graded
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trivial ring extensions. For the main transfer result in this paper, see Theorems 4.21
and 4.29.

As we proceed to study the above-mentioned classes of graded rings, the reader
may find it helpful to keep in mind the implications shown in the following figure,
which are obtained from the results of this paper and are not reversible.

Valuation ring

Almost valuation ring gr-valuation ring

gr-almost valuation ring

gr-quasi-local ring with linearly ordered prime homogeneous ideals

����)
PPPPq

PPPPq
����)

?

Let A be a ring and E be an A-module. Then the ring A ⋉ E with coordinate-
wise addition and multiplication given by (a1, e1) (a2, e2) = (a1a2, a1e2 + a2e1) is
a ring with unity (1, 0) (even R-algebra) called idealization of E or the trivial ring
extension of A by E. Note that A naturally embeds into A ⋉ E by a 7→ (a, 0). If
N is a submodule of E, then 0 ⋉ N is an ideal of A ⋉ E and 0 ⋉ E is a nilpotent
ideal of A ⋉ E of index 2. It is well known that I ⋉ N is an ideal of A ⋉ E if and
only if I is an ideal of R and N is a submodule of E such that IE ⊆ N , cf. [3,
Theorem 3.1].

Let Γ be a commutative monoid. Suppose that A =
⊕

α∈Γ Aα is a Γ-graded
ring and E =

⊕
α∈Γ Eα a Γ-graded A-module. Then A ⋉ E is a Γ-graded ring

with (A ⋉ E)α = Aα

⊕
Eα for every α ∈ Γ (cf. [6, Proposition 2]). Consequently,

h(A ⋉ E) = ∪α∈Γ(A ⋉ E)α.

2. Preliminaries

This section presents some basic properties of graded rings and modules used in
what follows. Let Γ be a torsionless grading monoid (written additively), with an
identity element denoted by 0, and the quotient group of Γ, ⟨Γ⟩ = {a− b | a, b ∈ Γ}
is a torsion-free abelian group. It is well known that a cancellative monoid is
torsionless if and only if can be given a total order compatible with the monoid
operation [17, p. 123].

Recall that a (not necessarily unital) ring R is called a Γ-graded ring, or simply
a graded ring, if R =

⊕
γ∈Γ Rγ , each Rγ is an additive subgroup of R and RγRδ ⊆

Rγ+δ for all γ, δ ∈ Γ. The set h(R) =
⋃

γ∈Γ Rγ is called the set of homogeneous
elements of R. The nonzero elements of Rγ are called homogeneous of degree γ
and we write deg(r) = γ if r ∈ Rγ\{0}. We call the set

ΓR = {γ ∈ Γ | Rγ ̸= 0}
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the support of R. We say R has a trivial grading, or R is concentrated in degree
zero if the support of R is the trivial group, i.e., R0 = R and Rγ = 0 for γ ∈ Γ\{0}.
Clearly R0 is a subring of R (intuitively 1 ∈ R0) and every Rα is an R0-module.
Note that every unit of R is homogeneous.

By a graded R-module E, we mean an R-module graded by Γ, that is, a direct
sum of subgroups Eα of E such that RαEβ ⊆ Eα+β for every α, β ∈ Γ. Let R and
R′ be two graded rings. Then a ring homomorphism f : R → R′ is called graded if
f(Rα) ⊆ R′

α for all α ∈ Γ. Let I be an ideal of R. Then I is called a homogeneous
ideal of R if one of the following equivalent conditions hold: (i) I =

⊕
α∈Γ Iα,

where Iα = I ∩ Rα for all α ∈ Γ, and (ii) a = aα1 + aα2 + · · · + aαn
∈ I implies that

aαi
∈ I, where aαi

∈ Rαi
. Similarly, a submodule N of M is called a homogeneous

submodule if and only if N =
⊕

α∈Γ Nα, where Nα = N ∩ Mα for all α ∈ Γ if and
only if m = mα1 +mα2 +· · ·+mαn ∈ N implies that mαi ∈ N , where mαi ∈ Mαi . If
I is a homogeneous ideal of a graded ring R =

⊕
α∈Γ Rα, then R/I =

⊕
α∈Γ(R/I)α

is a graded ring, where (R/I)α := (Rα + I) /I. A homogeneous ideal P of R is
called a prime homogeneous ideal (gr-prime) if P is a proper homogeneous ideal
of R with the property that a, b ∈ h(R) and ab ∈ P implies either a ∈ P or b ∈ P .
A homogeneous ideal M of R is called a maximal homogeneous ideal (gr-maximal)
if it is maximal among proper homogeneous ideals; equivalently, if every nonzero
homogeneous element of R/M is invertible.

A graded ring is said to be graded quasi local (gr-quasi local) if it has a unique
maximal homogeneous (gr-maximal) ideal and a graded ring A is called a graded-
field (gr-field) if every nonzero homogeneous element of R is invertible. Clearly,
every field is a graded field, however, the converse is not true in general, see [16,
p. 46].

Let R1 and R2 be two graded rings. Then R = R1 × R2 is a graded ring with
homogeneous elements h(R) =

⋃
α∈Γ Rα, where Rα = (R1)α × (R2)α for all α ∈ Γ.

It is well known that an ideal of R1 × R2 is of the form I1 × I2 for some ideals I1
of R1 and I2 of R2. Also it is easily seen that I1 × I2 is a homogeneous ideal of
R1 × R2 if and only if I1, I2 are homogeneous ideals of R1 and R2, respectively.

Let R be a graded ring, and let tq(R) denote the total ring of quotients of R and
H the saturated multiplicative set of regular homogeneous elements of R. Then,
by extending some definitions to the case where rings are with zero divisors, RH ,
called the homogeneous total ring of quotients of R, is a ring graded by ⟨Γ⟩, where
RH =

⊕
α∈⟨Γ⟩ (RH)α with

(RH)α =
{r

s
| r ∈ Rβ , s a regular element of Rγ and β − γ = α

}
.

If R is a graded integral domain (an integral domain graded by Γ), then RH is
called the homogeneous quotient field of R. Clearly, every nonzero homogeneous
element of RH is invertible and (RH)0 is a field.

We will be using the following definition (which agrees with the classical one if R
is a graded integral domain). A graded R-module E is said to be a torsion R-graded
module if, for each homogeneous e ∈ E, there exists a ∈ R \ {0} such that ae = 0.
We will also use the following standard definitions. A regular homogeneous element
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of a graded ring R is a non-zero-divisor homogeneous element; a graded R-module
E is gr-divisible if, for each homogeneous e ∈ E and each regular homogeneous
element a of R there exists f ∈ E such that e = af ; a graded A-module E is
a torsion-free (graded A-module) if whenever a ∈ h(A) and e ∈ E with ae = 0
implies that either a = 0 or e = 0. Lastly, as usual, for any Γ-graded ring A,
h-Spec(R) denotes the set of prime homogeneous ideals of R, h-Z(R) denotes the
set of all homogeneous zero-divisors of R and h-Reg(R) denotes the set of regular
homogeneous elements of R.

3. Some remarks of valuation-like properties

Recall from the introduction that a ring R is called an almost valuation ring
if, for any two elements a and b in R, there exists a positive integer n such that
either an divides bn (in R) or bn divides an. Following [1], a ring R is said to be
a valuation ring if, for all a, b ∈ R such that {a, b} ⊈ Z(R), either Ra ⊆ Rb or
Rb ⊆ Ra as defined in Huckaba’s book [9]; but it is not equivalent to the definition
of “valuation ring” used by Kaplansky [14, p. 35], as Kaplansky’s definition omits
the above stipulation that {a, b} ⊈ Z(R). It is clear that any “valuation ring” in
the sense of [14] is an AV-ring, but a “valuation ring” in the sense of [1] is not
necessary an AV-ring, as shown by the following example.

Recall that a ring R is said to be a total quotient ring if each regular element of
R is unit (each nonunit element of R is in Z(R)). Obviously, every total quotient
ring is a valuation ring in the sense of [1, 9].

Example 3.1. Let A be a non-AV-ring. Set M =
⊕

I∈∆ A/I, where ∆ is the
set of all ideals of A. Let x be a nonunit element of A, then I0 = xA ∈ ∆. So
x (rI)I∈∆ = 0, where rI = 0 for every I ̸= I0 and rI0 = 1 + I0, hence x ∈ Z(M).
Consequently, Z(M) = A \ U(A). Consider the trivial ring extension R = A ⋉ M .
So Z(R) = {(a, m) | a is a nonunit element of A, m ∈ M} by [9, Theorem 25.3].
Therefore R is a valuation ring in the sense of [1] since R is a total quotient ring;
but according to [15, Theorem 2.1] R is not a AV-ring since A is not.

Note that any valuation ring in the sense of Kaplansky [14] is a valuation ring in
the sense of [1, 9]; but the converse is not true in general as the following example
clarifies.

Example 3.2. Consider a non-valuation ring A in the sense of [14] (for instance,
a non-quasi-local ring). Set R = A ⋉ M the trivial ring extension of A by M with
M =

⊕
I∈∆ A/I. Then R is a valuation ring in the sense of [1] (cf. [Example 3.1])

but not a valuation ring in the sense of [14], since A is not [13, Lemma 2.2].

Remark 3.3. Note that the concept of valuation rings in the both senses coincide
in the case where the ring A is an integral domain. Then let F be a finite field
and X an indeterminate over F . Put H := F (X), the quotient field of F [X], and
let Y be an analytic indeterminate over H. Set D := H + Y 3H[[Y ]]. Then by [7,
Example 2.20] D is an almost valuation domain, which is not a valuation domain.
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Hence the valuation ring in Huckaba’s sense [1] is unrelated to the almost valu-
ation ring. We can clarify the meaning of each implication by the following figure;
none of the implications are reversible:

Valuation ring in [14]

Almost valuation ring Valuation ring in [1]

�������)

PPPPPPPq

4. Main results

There are two reasons why we begin by extending the definiton of a valuation ring
in Kaplansy’s sense [14, p. 35] to the case of Γ-graded rings. First, Definition 4.1
will be our framework of this study (unless otherwise stated, a gr-valuation ring is
as defined there). Second, Definition 4.1 will be used in a proof later in this paper.
That theme will motivate the choice of the contexts studied in our later results,
which, for the most part, seek to identify situations admitting positive transfer
results for the other graded ring-theoretic properties being considered here.

Definition 4.1. A graded ring R =
⊕

α∈Γ Rα is said to be a graded valuation
ring (gr-valuation ring) if every homogeneous elements a, b ∈ R, either aR ⊆ bR
or bR ⊆ aR.

Obviously, every valuation graded ring is a gr-valuation ring. The converse is
not true in general, as shown by the following construction.

Example 4.2. Let R be a gr-valuation ring. Pick a homogeneous element x ∈ R
with deg(x) ̸= 0, then (1 + x + x3)R is not comparable with (1 + x2)R under
inclusion. Hence R is a gr-valuation ring which is not valuation.

We say R is a graded almost valuation ring (gr AV-ring) if for every homogeneous
elements a, b ∈ R, there exists an integer n ≥ 1 such that anR ⊆ bnR or bnR ⊆ anR;
equivalently, if for any two homogeneous elements a, b ∈ R, there exists an integer n
such that an divides bn or bn divides an. Obviously, the concepts of “gr AV-rings”
and “AV-rings” coincide when the ring is trivially graded. We next clarify the
situation for nontrivially graded rings.

Proposition 4.3. Let R =
⊕

α∈Γ Rα be a nontrivially graded ring. Then R is
never an AV-ring. In particular, if R is a nontrivially graded AV-ring, then R is
never an AV -ring.

Proof. Choose a nonzero homogeneous element x of R with a nonzero degree. Since
R is nontrivially graded, then 1+x2 +x3 and x+x2 are nonhomogeneous elements
of R and so are nonunits of R. Therefore R is not quasi-local. Hence, by [10,
Proposition 2.2], R is not a AV-ring, as desired. □

The following result is straightforward.
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Proposition 4.4. Every gr-valuation ring R =
⊕

α∈Γ Rα is a gr-AV ring.

The converse of Proposition 4.4 fails. The obvious example is a nonvaluation
AV-ring [10, Example 2.5]; also, we can quote the failure of Anderson–Zafrullah’s
theorem beyond the context of integral domains [15, Example 2.3] which are triv-
ially graded; for nontrivially graded examples see Examples 4.17, 4.25 and 4.26.

Proposition 4.5. Let R be a gr AV-ring and I be a homogeneous ideal of R.
Then R/I is a gr AV-ring. In particular, if D is a gr-AVD and I is a non-prime
homogeneous ideal of D then D/I is a gr AV-ring with nonzero zero-divisors.

Proof. Put R̃ := R/I. Let x, y be two homogeneous elements in R/I. Pick two
homogeneous elements a, b ∈ R such that x = a + I and y = b + I. Since R is a gr
AV-ring, there exists an integer n ≥ 1 such that either anR ⊆ bnR or bnR ⊆ anR.
If anR ⊆ bnR, then

xnR̃ = (an + I) (R/I) = (anR + I) /I ⊆ (bnR + I) /I = ynR̃.

Similarly, if bnR ⊆ anR, then ynR̃ ⊆ xnR̃. The proof is complete. □

Recall that for a proper homogeneous ideal I of a graded ring R, the graded
radical of I will be designated by Gr(I) = {x =

∑
g∈Γ xg ∈ R : for each g ∈ Γ, there

exists ng ∈ N such that x
ng
g ∈ I}. It is straightforward to see that Gr(I) is always a

homogeneous ideal of R. Note that, if x is a homogeneous element, then x ∈ Gr(I)
if and only if xn ∈ I for some positive integer n (see [18]). Now, we determine the
gr-almost valuation ring in terms of graded radical ideals.

Proposition 4.6. Let R =
⊕

α∈Γ Rα be a gr AV-ring. Then I ⊆ Gr(J) or J ⊆
Gr(I), for every homogeneous ideals I and J in R. In particular, the graded radical
ideals of R are linearly ordered.

Proof. Assume that R is a gr AV-ring. Let I and J be two homogeneous ideals of R.
If I ⊈ Gr(J) and J ⊈ Gr(I), then there exist homogeneous elements y ∈ I\ Gr(J)
and x ∈ J\ Gr(I) respectively. Since R is a gr AV-ring, there exist a positive integer
n such that either xn | yn or yn | xn. We may assume, without loss of generality,
that xn | yn. Then yn = rxn for some r ∈ R, so yn ∈ J . Consequently, y ∈ Gr(J),
which is a contradiction. Hence I ⊆ Gr(J) or J ⊆ Gr(I). □

The following result is an immediate corollary of Proposition 4.6.

Corollary 4.7. Let R be a gr AV-ring. Then the prime homogeneous ideals of R
are linearly ordered. In particular, R has a unique maximal homogeneous ideal.

Recall that an overring of a ring R is a subring of the total quotient ring of
R that contains R. An overring T of R is called a homogeneous overring of R
if T ⊆ RH and T =

⊕
α∈⟨Γ⟩(T ∩ (RH)α); that is T is a graded subring of RH .

Clearly, for any homogeneous ideal I of R, the subset (I : I) = {x ∈ RH | xI ⊆ I}
is a homogeneous overring.

Proposition 4.8. Let R =
⊕

α∈Γ Rα be a gr AV-ring and T be a homogeneous
overring of R. Then T is a gr AV-ring.
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Proof. Let x and y be two homogeneous elements of T . Then x = a/s and y = b/t
for some homogeneous a, b ∈ R and regular homogeneous elements s, t ∈ R. Since
R is a gr AV-ring, there exists an integer n ≥ 1 such that (at)nR ⊆ (bs)nR or
(bs)nR ⊆ (at)nR. It follows that there is a r ∈ R such that (at)n = (bs)nr or
(bs)n = (at)nr, and so xn = (a/s)n = (b/t)n(r/1) = yn(r/1) or yn = xn(r/1).
Therefore, xnT ⊆ ynT or ynT ⊆ xnT , which leads to the fact that T is a gr
AV-ring. □

We next give an example of a gr AV-ring for the reader’s convenience.

Example 4.9. Let R =
⊕

α∈Γ Rα be a graded ring in which every homogeneous
element is either a unit or nilpotent. Then R is a gr AV-ring. In particular, if we
consider the graded trivial ring extension R = K ⋉ E with K is a field and E is
an K-vector space graded by Z2 via R0 = K ⋉ 0 and R1 = 0 ⋉ E. Then R is a gr
AV-ring.

Recall from [4, p. 288] that an extension R ⊆ T of a ring is said to be a root
extension of R if, for every x ∈ T , there exists an integer n ≥ 1 such that xn ∈
R. Analogously, we can define this notion in the setting of Γ-graded rings as
follows. Let T =

⊕
α∈Γ Tα be a graded ring and R a homogeneous subring of T .

Then the extension R ⊆ T is called a graded root extension (gr-root extension)
if for every homogeneous element x ∈ T , there exists an integer n ≥ 1 such that
xn ∈ R. Obviously, if R ⊆ T is a root extension, then it is a gr-root extension;
the converse is not true in general: the example is given by the polynomial rings
R := K[X] ⊆ L[X] =: T , where K ⊊ L are finite fields and R, T are Z+-graded
with deg (aXn) = n for every 0 ̸= a ∈ L and n ∈ Z+ (cf. [2, p. 550]). The following
theorem characterizes gr-AV rings (cf. [10, Theorem 3.4]).

Theorem 4.10. Let R =
⊕

α∈Γ Rα be a graded quasi-local ring with maximal
homogeneous ideal M . Set

RadV (M) =
{

x =
∑

g∈Γ
xg ∈ V | ∀g ∈ Γ, ∃ng ∈ N : x

ng
g ∈ M

}
,

where V is a gr AV-homogeneous overring of R such that M is a homogeneous
ideal of V and RadV (M) is the maximal homogeneous ideal of V . Then R is a gr
AV-ring if and only if V is a gr-root extension of R.

Proof. If V = R, then the assertions are clear in this case. Hence, we may assume
that V ̸= R and R is a gr AV-ring. Pick a homogeneous element xg ∈ V \R. Then
xg = a/b for some homogeneous a, b ∈ R, where b is a regular homogeneous element
and deg(a) − deg(b) = g. If xg ∈ RadV (M), then xn

g ∈ M ⊂ R for some n ≥ 1.
Now, assume that xg /∈ RadV (M). Since RadV (M) is the maximal homogeneous
ideal of V , xg is a unit of V , and so a is a regular homogeneous element of R. Since
R is a gr AV-ring, there exists an integer n ≥ 1 such that anR ⊆ bnR or bnR ⊆ anR.
In the first case, if anR ⊆ bnR, then xn

g ∈ R. If x−n
g ∈ M , then x−1

g ∈ RadV (M),
which is a contradiction. Hence x−n

g is a unit of R, and so xn
g ∈ R. Therefore V is

a gr-root extension of R.
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Conversely, assume that V is a gr-root extension of R and a, b are homogeneous
elements of R. Since V is a graded almost valuation ring, there is an n ≥ 1 such
that anV ⊆ bnV or bnV ⊆ anV . Assume that anV ⊆ bnV for some n ≥ 1. Then
there exists y ∈ V such that an = bny, from which it is easy to check that y is
homogeneous in V . Since V is a gr-root extension of R, there is an m ≥ 1 such
that ym ∈ R, and so amn = bmnym ∈ bmnR. Hence, we get amnR ⊆ bmnR, and
consequently R is a graded almost valuation ring. □

Let R ⊆ S be an extension of graded rings. It is obvious that h-Reg(S) ∩ R ⊆
h-Reg(R). However, the reverse inequality need not hold. Thus, it is not required
that h-Reg(S) ∩ R = h-Reg(R). (To put it another way, it is not necessary that S
is a torsion-free graded R-module, in the usual sense of the term). This equality
is frequently desired because it is equivalent to the statement that the universal
mapping property of graded rings of fractions allows the inclusion map R ↪→ SH to
extend to a (unique, necessarily injective) graded ring homomorphism RH → SH ,
in which case we use that injection to view RH ⊆ SH . It is natural to wonder if
there are relevant kinds of base graded rings R and graded ring extensions R ⊆ S
that admit an embedding of RH into SH in this way. We begin with a closely
similar result, following the next useful remark.

Remark 4.11. A homogeneous element x ∈ h-Reg(R) if and only if xr = 0 implies
that r = 0 for every homogeneous element r ∈ R.

Proof. If x ∈ h-Reg(R), then naturally xr = 0 implies that r = 0 for every ho-
mogeneous element r ∈ R. Conversely, assume that if xr = 0, then r = 0 for
every homogeneous element r ∈ R. Let r =

∑
g∈Γ rg ∈ R such that xr = 0, then

x(
∑

g∈Γ rg) =
∑

g∈Γ xrg = 0, which implies that xrg = 0 for every g ∈ Γ and so all
rg = 0. Consequently, r = 0; that is, x ∈ h-Reg(R). □

Lemma 4.12. Let R ⊆ S be a gr-root extension of rings with S (and hence R)
being a gr-reduced ring. Then h-Reg(S)∩R = h-Reg(R) and RH ⊆ SH is a gr-root
extension.

Proof. For the first assertion, we need only show that if x ∈ h-Reg(R), then
x ∈ h-Reg(S). Suppose that this fails, by Remark 4.11, we may pick a nonzero
homogeneous element y ∈ S, such that xy = 0. Since R ⊆ S is a gr-root extension,
there exists an integer n ≥ 1 such that yn ∈ R. Then xnyn = (xy)n = 0. As
h-Reg(R) is a multiplicatively closed set, xn ∈ h-Reg(R), and so yn = 0. Since S is
gr-reduced, y = 0, the desired contradiction. This completes the proof of the first
assertion.

In light of the first assertion, it follows from the above comments that we may
view RH ⊆ SH . It remains only to show that this is a gr-root extension. Given a
homogeneous u ∈ SH , we must find an integer k ≥ 1 such that uk ∈ RH . Write
u = a/z, with a ∈ h(S) and z ∈ h-Reg(S). Since R ⊆ S is a root extension,
there exist integers n ≥ 1 and m ≥ 1 such that an ∈ R and zm ∈ R. Note that
(an)m ∈ Rm = R. Moreover, since h-Reg(S) is a multiplicatively closed set, zm and
(zm)n are elements of h-Reg(S) (and of R). Consequently, by the first assertion,
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(zm)n ∈ h-Reg(R). Since

unm = (an)m

(zm)n ∈ SH ,

it follows that unm ∈ RH . Therefore, taking k := nm completes the proof. □

While going further into the “gr-root extension” hypothesis, we next continue
the project of generalizing some ring-theoretic observations and results from [11]
and [10] to the graded ring-theoretic context.

Theorem 4.13. The following statements hold.
(1) Let R ⊆ S be a gr-root extension of rings. Then R is a gr AV-ring if and

only if S is a gr AV-ring.
(2) Let R ⊆ S be a gr-root extension of rings. Then the following conditions

are equivalent:
(a) R is a gr AV-ring;
(b) S is a gr AV-ring;
(c) T is a gr AV-ring for each graded ring T such that R ⊆ T ⊆ S.

If, in addition, S is a gr-reduced ring, then the above conditions (a)–(c) are
equivalent to:
(d) T is a gr AV-ring, for each graded ring T such that R ⊆ T ⊆ SH .

Proof. (1) Consider two nonzero homogeneous elements x, y ∈ S. As R ⊆ S is a
gr-root extension, there exists an integer n ≥ 1 such that xn, yn ∈ R. Since R is a
gr AV-ring, there exists an integer m ≥ 1 such that either xnm divides ynm in R
or ynm divides xnm in R. Therefore, either xnm divides ynm in S or ynm divides
xnm in S. Thus, S is a gr AV-ring. Conversely, consider two nonzero homogeneous
elements x, y ∈ R. Then x, y ∈ S. Since S is a gr AV-ring, there exists a positive
integer k such that either xk = ayk or yk = bxk for some elements a, b ∈ S (i.e, a, b
are homogeneous in S). Since R ⊆ S is a gr-root extension, there exists a positive
integer n such that an, bn ∈ R. Hence, either xkn = anykn or ykn = bnxkn. Since
an, bn ∈ R, this completes the proof that R is a gr AV-ring.

(2) For any graded rings extensions R ⊆ A ⊆ B ⊆ S, it is clear that the graded
ring extension A ⊆ B inherits the “gr-root extension” property from R ⊆ S. Hence,
the equivalences (a) ⇔ (b) ⇔ (c) follow from (a) and (b).

Next, assume that S is gr-reduced. Then by Lemma 4.12 (and the discussion
preceding it), we have (R ⊆)RH ⊆ SH . Since (d) ⇒ (c) trivially, it will suffice to
show that (b) ⇒ (d).

Assume that S is a gr AV-ring (and that S is gr-reduced). Our task is to
show that if T is a graded ring such that R ⊆ T ⊆ SH , then T is a gr AV-
ring. To that end, consider two nonzero homogeneous elements x, y ∈ T . Then
x, y ∈ SH . As SH inherits the “gr AV-ring” property from S by Proposition 4.8,
there exists an integer n ≥ 1 and α, β ∈ SH (which are homogeneous) such that
either xn = αyn or yn = βxn. Without loss of generality, we assume that xn = αyn.
Since RH ⊆ SH is a gr-root extension by Lemma 4.12, there exists an integer
m ≥ 1 such that αm ∈ RH . Thus, αm = c/d ∈ RH , for some homogeneous
elements c ∈ R and d ∈ h-Reg(R). As S is a gr AV-ring, there exist homogeneous
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u, v ∈ S and an integer k ≥ 1 such that either ck = udk or dk = vck. Again
as R ⊆ S is a gr-root extension, there exists a positive integer p such that up,
vp ∈ R ⊆ T . Therefore, either xnmkp = upynmkp or ymmkp = vpxnmkp. (The
handling of the latter possibility involved a somewhat subtle additional use of
Lemma 4.12. In detail, if dk = vck, one obtains xnmkp = ynmkp/vp en route to
showing that ynmkp = vpxnmkp, and this use of “fractional” notation is legitimate
since vp ∈ h-Reg(S) ∩ R = h-Reg(R), the underlying point being that vck = dk ∈
h-Reg(R) ⊆ h-Reg(S) ensures that v is an element of the multiplicatively closed
set h-Reg(S).) Thus, either xnmkpT ⊆ ynmkpT or ynmkpT ⊆ xnmkpT . This proves
that T is a gr AV-ring. The proof is complete. □

Example 4.14. Let R be a graded integral domain but not a gr AV-domain; it is
nonetheless the case that S = RH is the homogeneous quotient field of R is a gr AV-
domain. Thus, the equivalence (a) ⇔ (b) in Theorem 4.13 (2) cannot be expected
to hold for an arbitrary graded extension of domains (let alone an arbitrary pair
of graded rings) R ⊆ S. What led to that equivalence holding in Theorem 4.13 (2)
was the assumption that R ⊆ S is a gr-root extension.

Remark 4.15. Note that for a ring A and an A-module E, the trivial ring exten-
sion R = A ⋉ E is naturally graded via N where the subgroups are defined, in [3],
as follows: R0 = A ⋉ 0, R1 = 0 ⋉ E and Rn = 0 for n ≥ 2, which can simply be
viewed as a Z2-grading since (0 ⋉ E)2 = 0.

The following proposition characterizes when R = A ⋉ E is a gr-AV ring if R is
trivially graded.

Proposition 4.16. With the notation of Remark 4.15, let A be a ring, E an
A-module, and the trivial ring extension R = A ⋉ E. Then R = A ⋉ E is a gr-AV
ring if and only if A is an AV-ring.

Proof. Let x, y ∈ A; then (x, 0), (y, 0) are homogeneous elements (of a zero degree)
in R. Since R is a gr AV-ring, there exists a positive integer n such that (x, 0)n ∈
R(y, 0)n or (y, 0)n ∈ R(x, 0)n. Thus, xn ∈ Ayn or yn ∈ Axn, and hence A is an
AV-ring. Conversely, let x and y be two homogeneous elements in R. Two cases
are then possible.
Case 1. deg(x) = deg(y) = 0. Then x = (a, 0) and y = (b, 0) for a, b ∈ A. Since
A is an AV-ring, there exists a positive integer n such that either anA ⊆ bnA or
bnA ⊆ anA. We may assume, without loss of generality, that anA ⊆ bnA. Then
an = bnc for some c ∈ A, we have

xn = (a, 0)n = (bnc, 0) = (c, 0)(bn, 0) = (c, 0)yn ∈ ynR.

Case 2. Either deg(x) = 1 or deg(y) = 1. Without loss of generality, assume that
deg(x) = 1, then x = (0, e) for some e ∈ E. So x2 = (0, 0) ∈ y2R, as desired. □

Using the notation of Remark 4.15 and Proposition 4.16, we can easily construct
straightforward examples of gr AV-rings which are not gr-valuation rings.
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Example 4.17. (1) Let A be an AV-ring which is not a valuation ring (for instance,
see Remark 3.3) and M an A-module. Set R = A ⋉ M the trivial ring extension.
Then R is a gr-AV ring since A is a AV-ring by Proposition 4.16; as A is not
valuation ring, there exist two elements x, y ∈ A such that xA and yA are not
comparable under inclusion. Hence the two homogeneous ideals (x, 0)R and (y, 0)R
of R are not comparable under inclusion. Hence R is a gr AV-ring which is not a
gr-valuation ring.

(2) Let A be a valuation ring. Set R = A ⋉ M the trivial ring extension with
M = A ⊕ A. Then R is a gr AV-ring since A is an AV-ring. On the other hand,
the two homogeneous ideals (0, a)R and (0, b)R of R are not comparable under
inclusion with a = (0, 1) and b = (1, 0), consequently R is not a gr-valuation ring.

Beyond the trivial context of graded rings, the following theorem shows that,
for a useful kind of condition, one can characterize when the graded trivial ring
extension R = A ⋉ E is a gr-AV ring.
Theorem 4.18. Let A be a gr-AV ring and aE = a2E for all a ∈ h(A). Then
R = A ⋉ E is a gr-AV ring.
Proof. Let α := (a, x) and β := (b, y) ∈ h(R). Since a, b ∈ h(A) and A is a gr-AV
ring, there exists n ≥ 1 such that either Aan ⊆ Abn or Abn ⊆ Aan. Without loss
of generality, we may assume that Aan ⊆ Abn. Then we can write an = bnc for
some c ∈ h(A). Then we have a2n = b2nc2. Now we will show that Rα2n ⊆ Rβ2n.
To show that the inclusion, we must show that (a, x)2n = (b, y)2n(c2, e) for some
e ∈ A. First note that a2n−1E = a2nE and b2n−1E = b2nE since aE = a2E and
bE = b2E. As 2na2n−1x = a2n−12nx ∈ a2n−1E = a2nE, we can find m ∈ E such
that 2na2n−1x = a2nm = b2n(c2m). Similarly, we can write 2nb2n−1c2y = b2nm′

for some m′ ∈ E. This gives 2na2n−1x − 2nb2n−1c2y = b2n(c2m − m′). Now, put
e = c2m − m′ ∈ E. Then we conclude that 2na2n−1x = 2nb2n−1c2y + b2ne and
thus (a, x)2n = (b, y)2n(c2, e). This implies that R(a, x)2n ⊆ R(b, y)2n and hence
R is a gr-AV ring. □

Recall from [12] that an A-module E is said to be a von Neumann regular module
if for each m ∈ E, Am = aE = a2E for some a ∈ A. The authors in [12] showed
that a finitely generated A-module E is a von Neumann regular module if and only
if aE = a2E for all a ∈ A.
Corollary 4.19. Let E be a finitely generated von Neumann regular module. Sup-
pose that A is a graded ring, E is a graded A-module and R = A⋉E is the graded
trivial extension. Then R is a gr-AV ring if and only if A is a gr-AV ring.
Proof. This follows from the previous theorem. □

Recall from the introduction that a graded R-module E is gr-divisible if, for each
homogeneous e ∈ E and each regular homogeneous element a of R, there exists
f ∈ E such that af = e.
Proposition 4.20. Let E be a graded R-module. Then E is gr-divisible if and
only if, for every regular element a ∈ h(R) and every e ∈ E, the equation af = e
has a solution in E.
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Proof. If af = e has a solution f in E for each regular homogeneous element a ∈ R
and each element e ∈ E, then E is trivially a gr-divisible module. Conversely,
assume that E is gr-divisible and let a be a regular homogeneous element of R and
e =

∑
g∈Γ eg ∈ E; then there exists fg ∈ E such that afg = eg for each g ∈ Γ, and

hence a
∑

g∈Γ fg = e, as desired. □

Our new result studies the possible transfer of the gr AV-ring property between
a graded ring A and a graded trivial ring extension A ⋉ E. Recall from [16] that
a graded ring R =

⊕
α∈Γ Rα is said to be a crossed product if Rα contains a unit

for every α ∈ Γ.

Theorem 4.21. Let A be a graded ring, E a nonzero graded A-module and R :=
A ⋉ E the graded trivial ring extension. Then:

(1) If R is a gr AV-ring, then so is A.
(2) Suppose that h-Z(A) = h-Nil(A) and E is a gr-divisible A-module. Then R

is a gr AV-ring if and only if A is a gr AV-ring.
(3) Suppose that Q ⊆ A, h-Z(A) = h-Nil(A) and E is a torsion-free graded

A-module. Further, assume that the grading monoid Γ is a group and A
is a crossed product. Then R is an gr AV-ring if and only if A is a gr
AV-ring and E is a gr divisible A-module.

(4) Let (A, M) be a graded quasi-local ring (with maximal homogeneous ideal
M) and let E be a graded A-module such that M = Gr(Ann(E)). Then R
is a gr AV-ring if and only if A is a gr AV-ring.

Proof. (1) Let a, b be two homogeneous elements of A; then (a, 0), (b, 0) are homo-
geneous elements of R. Since R is a gr AV-ring, there exists a positive integer n
such that (a, 0)n ∈ R(b, 0)n or (b, 0)n ∈ R(a, 0)n. Thus, an ∈ Abn or bn ∈ Aan,
and hence A is a gr AV-ring.

(2) Assume that h-Z(A) = h-Nil(A) and E is a gr divisible A-module. By (1), it
is only required to prove that if A is a gr AV -ring, then R is a gr AV-ring. Which
means that if α := (a, e) and β := (b, f) are homogeneous elements of R, then
there exists a positive integer n such that either αn ∈ βnR or βn ∈ αnR. Then
two cases are possible. In the first case, a and b are each regular homogeneous
elements of A. Then, since A is a gr AV-ring, there exists a positive integer n
such that either anA ⊆ bnA or bnA ⊆ anA. We may assume, without loss of
generality, that anA ⊆ bnA. Then an = bnc for some c ∈ A. Since E is a gr-
divisible A-module and bn is a regular homogeneous element of A, there exists
d ∈ E such that bnd = nan−1e − ncbn−1f according to Proposition 4.20. Therefore
(with a0 := 1), we have

αn = (a, e)n =
(
an, nan−1e

)
=

(
bnc, bnd + ncbn−1f

)
=

(
bn, nbn−1f

)
(c, d) = βn(c, d) ∈ βnR,

as desired. In the remaining case, either a or b is a homogeneous zero-divisor in A.
Without loss of generality, a ∈ h-Z(A) = h-Nil(A). Then there exists a positive
integer n such that an = 0. Hence αn+1 =

(
an+1, (n + 1)ane

)
= (0, 0) ∈ βn+1R,

as desired.
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(3) By (1) and (2), we need only prove that if R is a gr AV-ring (along with
the hypotheses that Q ⊆ A and E is a torsion-free graded A-module), then E is a
gr-divisible A-module; that is, if e is a nonzero homogeneous element of E and a is
a regular homogeneous element of A, then e ∈ aE. Assume that deg(a) = h1 and
deg(e) = h2. Since Γ is a group and A is crossed product, we can choose a unit
homogeneous element x ∈ Ah2−h1 . Note that (xa, e) is a homogeneous element of
R with deg(xa, e) = h2, since R is a gr AV-ring, there exists a positive integer n
such that either (a, 0)n ∈ (xa, e)nR or (xa, e)n ∈ (a, 0)nR (keep in mind, (a, 0) is a
homogeneous element for any homogeneous element a ∈ A). There are two cases.
The first case, (a, 0)n = (xa, e)n(c, f) for some (c, f) ∈ R. Then (a, 0)n = (an, 0) =
(xa, e)n(c, f) =

(
xnan, nxn−1an−1e

)
(c, f) =

(
xnanc, xnanf + nxn−1an−1ce

)
, so

that xnanc = an and xnanf + nxn−1an−1ce = 0. These facts can be rewritten
as an(xnc − 1) = 0 and an−1(xnaf + nxn−1ce) = 0. Since an and an−1 are each
regular homogeneous elements of A (h-Reg(A) is a multiplicatively closed set), the
hypothesis that E is a torsion-free graded A-module gives first that xnc = 1 and
next that xnaf +nxn−1ce = 0. Multiplying by n−1 ∈ Q ⊆ A and (x−1)n−1 ∈ A, we
get ce = n−1(−xaf) = a

(
−n−1xf

)
∈ aE and so e ∈ aE since c is unit, as desired.

In the remaining case, (xa, e)n = (a, 0)n(d, g) for some (d, g) ∈ R. Simplifying and
equating second coordinates, we have ang = nxn−1an−1e. As above, the hypotheses
that E is a torsion-free graded A module and a is a regular homogeneous element
give that ag = nxn−1e. It follows that e = a

(
n−1(x−1)n−1g

)
∈ aE, as desired.

(4) By (1), we need only prove that if A is a gr AV-ring, along with the hypothesis
that M = Gr(Ann(E)), then R is a gr AV -ring. Let α = (a, e), β = (b, f) ∈ h(R). If
a is a homogeneous unit in A, then α is a homogeneous unit in R [6, Proposition 5],
so that β1 = β ∈ R = αR = α1R. Similarly, if b is a homogeneous unit in A, then
α1 ∈ β1R. Thus, we may assume, without loss of generality, that a ∈ M and
b ∈ M . Then, since M ⊆ Gr(Ann(E)), there exist positive integers m and p such
that am ∈ Ann(E) and bp ∈ Ann(E). As A is a gr AV-ring, there exists a positive
integer n such that either an ∈ bnA or bn ∈ anA. We may assume, without loss
of generality, that an ∈ bnA. Taking (mp + 1)th powers and rewriting, we get
a(mp+1)n = b(mp+1)nr for some r ∈ A. Then, since (mp + 1)n − 1 ≥ max(m, p),

α(mp+1)n = (a, e)(mp+1)n =
(
a(mp+1)n, (mp + 1)na(mp+1)n−1e

)
=

(
a(mp+1)n, 0

)
=

(
b(mp+1)nr, 0

)
=

(
b(mp+1)nr, (mp + 1)nb(mp+1)n−1f

)
=

(
b(mp+1)n, (mp + 1)nb(mp+1)n−1f

)
(r, 0)

= (b, f)(mp+1)n(r, 0) ∈ β(mp+1)nR,

as desired. This completes the proof. □

If A is a graded integral domain, Theorem 4.21 (2) specializes to the following
result.
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Corollary 4.22. Let A be a graded integral domain, E a graded A-module, and
R = A ⋉ E the graded trivial ring extension.

(1) Assume that E is a gr-divisible A-module. Then R is a gr-AV ring if and
only if A is a gr AV-ring.

(2) Assume that E is a K-vector space, where K is the homogeneous quotient
field of fractions of A. Then R is a gr-AV ring if and only if A is a gr
AV-ring.

If (A, M) is a graded quasi-local ring and E a graded A-module, then the corol-
lary below gives another application of Theorem 4.21 (4).

Corollary 4.23. Let (A, M) be a graded quasi-local ring, E a graded A-module,
and R := A⋉E the graded trivial ring extension. Assume that MnE = 0 for some
positive integer n ≥ 1. Then R is a gr AV-ring if and only if A is a gr AV-ring.

Proof. Obviously, if E = 0 then the assertions are clear since R ∼= A. Thus,
we may henceforth assume, without loss of generality, that E ̸= 0. Then we
have Ann(E) ̸= A. Let x be a homogeneous element of M ; then xnE = 0, so
xn ∈ Ann(E), which implies that x ∈ Gr(Ann(E)). Thus Gr(Ann(E)) = M , and
so an application of Theorem 4.21 (4) completes the proof. □

Remark 4.24. Let (A, M) be a graded quasi-local ring and M be the only prime
homogeneous ideal of A. Therefore M = h-Nil(A). Then, every homogeneous
element of A is unit or nilpotent. Hence, by Example 4.9, A is always a gr AV-ring.
Note that, if A has a unique prime homogeneous ideal M , then A ⋉ E has also a
unique prime homogeneous ideal M ⋉ E. Therefore A ⋉ E is always a gr AV-ring.

Our next example illustrates part (2) of Theorem 4.21.

Example 4.25. Let D be a gr-AVD, K the homogeneous quotient field of D and
E = K × K. Then R := D ⋉ E is a gr AV-ring which is neither a graded integral
domain nor a graded valuation ring.

Proof. By Corollary 4.22 R is a gr AV-ring. It is straightforward to see that R
is not a graded integral domain. On the other hand, the two homogeneous ideals
(0, x)R and (0, y)R of R are not comparable under inclusion with x = (0, 1) and
y = (1, 0). Hence R is not a graded valuation ring. □

The integral closure of an almost valuation domain is a valuation domain, as
shown by Anderson and Zafrullah in [4, Theorem 5.6]; but beyond the context of
integral domains, N. Mahdou, A. Mimouni, and M. A. Salam Moutui explained in
[15] the failure of this characterization. Afterwards in [8, Theorem 2.3], C. Bakkari,
N. Mahdou, and A. Riffi provided an analog characterization of the gr-AVDs in
relation to the graded theory. The following example shows how Bakkari, Mahdou,
and Riffi’s theorem fails outside of the framework of graded integral domains.
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Example 4.26. Let (A, M) be a valuation domain which is not a field, and E a
non-simple A-module such that ME = 0. With the notation of Remark 4.15, let
R = A ⋉ E be the trivial ring extension, and R̄ the integral closure of R in the
total quotient ring of R. Then we have as follows:

(1) R is a gr AV-ring.
(2) R̄ = R is not a gr-valuation ring.

Proof. (1) By Proposition 4.16, since A is an AV-ring.
(2) First, it is straightforward to see that Z(R) = {(a, m) | a is a nonunit element

of A, m ∈ E}. Hence R is a total quotient ring. Thus R is a fortiori integrally closed
in its total quotient ring. However, since A is not a field we conclude that M ̸= 0,
E has a proper submodule N since it is not a simple module. Let a(̸= 0) ∈ M , as
aE = 0, aR ⋉ N is a homogeneous ideal of R by [3, Theorem 3.3]. Therefore we
can see the two homogeneous ideals aR ⋉N and 0⋉E are not comparable and so
R is not a gr-valuation ring, as desired. □

Recall from the introduction that a ring R is called an almost Bezout ring if, for
any two elements a and b in R, there exists a positive integer n such that the ideal
(an, bn) is principal. Now we introduce the notion of graded almost Bezout rings.

Definition 4.27. A graded ring R is said to be a graded almost Bezout ring (gr-
AB ring) if, for each a, b ∈ h(R), there exist n ≥ 1 and x ∈ h(R) such that
(an, bn) = (x).

Theorem 4.28. Let R be a graded integral domain. Then R is a gr-AV domain
if and only if R is a gr-AB domain and R is a gr-local ring.

Proof. (⇒): Suppose that R is a gr-AV domain. Then by Corollary 4.7, (R, M)
is a gr-local ring. Let a, b ∈ h(R). Then there exists n ≥ 1 such that anR ⊆ bnR
or bnR ⊆ anR. This implies that (an, bn) = (bn) or (an, bn) = (an). Thus, R is a
gr-AB domain.

(⇐): Let R be a gr-AB domain and R be a gr-local ring, where M is the unique
homogeneous maximal ideal of R. Let a, b ∈ h(R). Since M is unique homogeneous
maximal ideal, we may assume that a, b ∈ M . Since R is a gr-AB domain, there
exist n ≥ 1 and x ∈ h(R) such that (an, bn) = (x). Then there exist r, s ∈ R such
that x = ran + sbn. Let r =

∑
rg and s =

∑
sg. Then x =

∑
anrg +

∑
bnsg.

Then there exists g, h ∈ G such that x = rgan +shbn, where deg(x) = deg(rgan) =
deg(shbn). Since an ∈ (x), we can write an = y(rgan + shbn). As an, x ∈ h(R),
we may assume that y ∈ h(R). Similarly, we can find z ∈ h(R) such that bn =
z(rgan + shbn). This gives that rgan + shbn = (rgan + shbn)(rgy + shz). Since R
is a graded domain, we have rgy + shz = 1. Since y, z ∈ h(R) and M is unique
homogeneous maximal ideal, either y or z is unit. Indeed, if y, z are nonunit, then
y, z ∈ M , which implies that rgy + shz = 1 ∈ M , a contradiction. Without loss of
generality, we may assume that y is a unit of R. Since an = y(rgan + shbn), we
have x = rgan + shbn ∈ y−1an ∈ Ran. This implies that bn ∈ Rx ⊆ Ran and so
we have Rbn ⊆ Ran. Hence, R is a gr-AV domain. □
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The following theorem studies the possible transfer of the gr-AB ring property
between a ring A and a graded trivial ring extension A ⋉ E.

Theorem 4.29. Let A be a graded ring, E a nonzero graded A-module and R =
A ⋉ E the graded trivial extension. Then:

(1) If R is a gr-AB ring, then so is A.
(2) Suppose that h-Z(A) = h-Nil(A) and E is a gr-divisible A-module. Then R

is a gr-AB ring if and only if A is a gr-AB ring.
(3) Let (A, M) be a gr-local (with unique homogeneous maximal ideal M of A)

and let M = Gr(Ann(E)). Then R is a gr-AB ring if and only if A is a
gr-AB ring.

Proof. (1) Assume that R is a gr-AB ring. Let a, b ∈ h(A). Then α := (a, 0) and
β := (b, 0) are homogeneous in R. Then there exist a homogeneous x := (c, y) ∈
h(R) and n ≥ 1 such that R(a, 0)n + R(b, 0)n = Rx. This gives Aan + Abn = Ax,
that is, A is a gr-AB ring.

(2) Suppose that h-Z(A) = h-Nil(A) and E is a gr-divisible module. If R is a
gr-AB ring, then by (1), A is a gr-AB ring. Now, suppose that A is a gr-AB ring
and (a, m), (b, m′) are homogeneous in R. Then a, b ∈ h(A). Let a ∈ h-Z(A). Then
there exists n ≥ 1 such that an = 0. This gives (a, m)n+1 = (an+1, (n + 1)anm) =
(0, 0), that is, R(a, m)n+1 ⊆ R(b, m′)n+1. If b ∈ h-Z(A), one can similarly show
that R(b, m′)n+1 ⊆ R(a, m)n+1 for some n ≥ 1. Now, suppose that a, b are regular
homogeneous elements of A. Put α := (a, m) and β := (b, m′). We will show that
there exist n ≥ 1 and γ ∈ h(R) such that Rαn + Rβn = Rγ. Since A is a gr-AB
ring, there exist n ≥ 1 and x ∈ h(A) such that Aan + Abn = Ax. This gives
x = ran + sbn for some r, s ∈ A. Let z ∈ Rαn + Rβn. Then z = (can + dbn, e)
for some c, d ∈ A and e ∈ E. Since can + dbn ∈ Aan + Abn = Ax, we can write
can + dbn = xy for some y ∈ A. Note that x is a regular homogeneous element of
A since an is regular and an ∈ Aan ⊆ Ax. Since E is a gr-divisible module and x
is regular, by Proposition 4.18, there exists f ∈ E such that e = xf . This gives
z = (can + dbn, e) = (xy, xf) = (x, 0)(y, f). Then we have Rαn + Rβn ⊆ R(x, 0).
Now, we will show that the reverse inclusion holds. Since E is gr-divisible and
an is regular, we can write −nran−1m − nsbn−1m′ = anm′′ for some m′′ ∈ E.
Thus (x, 0) = (ran + sbn, 0) = (a, m)n(r, m′′) + (b, m′)(s, 0), and this implies that
R(x, 0) ⊆ Rαn + Rβn. Thus we have Rαn + Rβn = R(x, 0), that is, R is a gr-AB
ring.

(3) We need only show that if (A, M) is a gr-local and gr-AB ring such that
Gr(Ann(E)) = M , then R is a gr-AB ring. Let α := (a, x) and β := (b, y) ∈ h(R). If
a or b is unit, then α or β is unit. Thus we have Rα+Rβ = R(1, 0), which completes
the proof. Now, assume that a, b are nonunits homogeneous elements of A, that
is, a, b ∈ M = Gr(Ann(E)). Then there exists n ≥ 1 such that anE = bnE = 0.
Since an+1, bn+1 ∈ h(A) and A is a gr-AB ring, there exists k ≥ 1 such that
A(an+1)k + A(bn+1)k = Ac for some c ∈ h(A). On the other hand, note that

Rα(n+1)k + Rβ(n+1)k = R(a(n+1)k, (n + 1)ka(n+1)k−1x)

+ R(b(n+1)k, (n + 1)kb(n+1)k−1y)
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= R(a(n+1)k, 0) + R(b(n+1)k, 0)
= R(an+1, 0)k + R(bn+1, 0)k.

Thus we have Rα(n+1)k + Rβ(n+1)k = R(c, 0), which completes the proof. □

If A is a graded integral domain and E is a gr-divisible A-module, Theo-
rem 4.29 (2) specializes to the following result.

Corollary 4.30. Let A be a graded integral domain and E a gr-divisible A-module.
Then A ⋉ E is a gr-AB ring if and only if A is a gr-AB domain.
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Math. Roumanie (N.S.) 51(99) no. 1 (2008), 3–9. MR Zbl
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