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A GENERALIZED BERNOULLI DIFFERENTIAL EQUATION

HECTOR CARMENATE, PAUL BOSCH, JUAN E. NAPOLES, AND JOSE M. SIGARRETA

ABSTRACT. We study a generalized form of the Bernoulli differential equa-
tion, employing a generalized conformable derivative. We first establish a
generalized variant of Gronwall’s inequality, which is essential for assessing
the stability of generalized differential equation systems, and offer insights
into the qualitative behavior of the trivial solution of the proposed equation.
We then present and prove the main results concerning the solution of the
generalized Bernoulli differential equation, complemented by illustrative ex-
amples that highlight the advantages of this generalized derivative approach.
Furthermore, we introduce a finite difference method as an alternative tech-
nique to approximate the solution of the generalized Bernoulli equation and
demonstrate its validity through practical examples.

1. INTRODUCTION

Fractional calculus, a branch of mathematics exploring differentiation and inte-
gration operators of generalized orders, emerged nearly simultaneously with tradi-
tional calculus. While its inception paralleled that of classical calculus, fractional
calculus has proven its versatility across a myriad of applications. Notable works
such as [3, [Bl, [13], [7, [32] 21] serve as testament to its widespread utility. However,
tackling systems of fractional differential equations has presented unique hurdles,
prompting the exploration of diverse methodologies, as evidenced by studies such
as [15] 17, 34].

The global fractional derivatives, which collect information on an interval and
keep track of the history of the process, can be said to possess a certain memory.
Which makes it possible to model non-local and distributed responses that com-
monly appear in natural and physical phenomena, although it is known that they
have certain limitations. In [27], a conformable fractional derivative is defined, of-
fering advantages in its own right. More recently, a non-conformable local fractional
derivative was introduced in [I9]. The conformable fractional derivative, serving
as a local operator, sets itself apart from non-local counterparts like Caputo or
Riemann—Liouville. Viewing fractional local derivatives as a new perspective, they
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have demonstrated utility in various applications by several authors, as evidenced
in [36] (14 19, [3, 18, 24, 28].

This paper relies on the use of new differential operators, which depend on a
general kernel function T'(¢, ). These operators encompass several local derivatives
that have been introduced and studied in various sources. This new tool is powerful
because it allows us to model a phenomenon from two perspectives: by considering
different kernels and by varying the order associated with each kernel as shown in
several studies [22] 29] 31 [33].

It is known that one of the most paradigmatic nonlinear equations is the Bernoulli
differential equation, introduced by Jacob Bernoulli in his work [8]. This equation
can be viewed as a manifestation of the principle of conservation of energy in
fluids. In this paper, we will investigate Bernoulli’s equation using the general-
ized conformable derivative operator. To begin, we establish a generalized form
of Gronwall’s inequality and derive stability conditions for systems of generalized
differential equations utilizing the generalized conformable derivative approach.
Subsequently, we determine solubility and stability conditions for the proposed
generalized Bernoulli equation. Finally, we provide examples illustrating particu-
lar cases of this Bernoulli equation viewed from different perspectives.

There are cases in which the generalized differential equation becomes too com-
plicated to solve by classical methods, and other alternatives must be analyzed.
Numerical methods are a very useful tool when we must solve this type of equa-
tions. Finite difference methods replace the derivative operator with an appropriate
quotient in differences, which allows us to approximate the solution quite efficiently.
Here, we use a finite difference method to estimate the solution of the generalized
Bernoulli equation and showcase the results obtained through examples.

2. PRELIMINARIES

In this section, we present a definition of a generalized conformable derivative,
introduced in [16], as well as a fractional integration operator, given in [14], together
with some of its most important properties that will be useful in the next section.

In [I6] the definition is given as follows. Given s € R, we denote by [s] the
upper integer part of s, i.e., the smallest integer greater than or equal to s.

Definition 2.1. Given an interval I C R, f : I — R, @ € R" and a positive
continuous function T'(¢,«) on I, the derivative G f of f of order « at the point
t € I is defined by

L [ o]
§f(t) = lim —=» (—=1)* f(t—khT(t,a)).
i e 20 () o )

If a = inf{t € I} (rvespectively, b = sup{t € I}), then G f(a) (respectively,

2f(b)) is defined with h — 0~ (respectively, h — 0T) instead of h — 0 in the
limit.

The derivative we are considering generalizes many of the properties of the
local derivatives existing so far. It also allows the computation of higher-order
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derivatives and is not limited only to functions defined on the positive half-line. It
is important to emphasize that the choice of the kernel T'(¢, ) leads to different
practical applications. Thanks to the generality of the theoretical results obtained,
we can state that they do not depend on the choice of the kernel. In the same
direction, different applications of the generalized derivatives are shown, as well as
their relations with other types of local derivatives (conformable or not), as shown
in [2]:
(1) If « € (0,1] and T'(t,«) = t'=*, then the conformable fractional derivative
defined in [27] is obtained.
(2) If « € (0,1] and T(¢, ) = k() =, then the general conformable fractional
derivative defined in [4] is derived.
(3) If « € (0,1] and T'(t,a) = ¢!, then the non-conformable fractional deriv-
ative defined in [19] is obtained.

(4) Ifa € (0,1 and T'(¢, ) = (t + ﬁ) , then we obtain the beta-derivative
defined in [6].
If we choose the function T'(t,a) = t/*1= then we obtain the following case of
the function G, which is a conformable derivative.

Definition 2.2. Let I be an interval I C (0,00), f : I — R and « € RT. The
conformable derivative G*f of f of order o at the point ¢ € I is defined by
G (t) = lim — 3 1 (191 p (¢ = ko1
f()—hli%h[a]kz(_) k f(_ )

Note that, if « = n € N and f is smooth enough, then Definition [2.2] coincides
with the classical definition of the n-th derivative.

The conformable derivative T, that was defined in [27] is a particular case of
G when « € (0,1] and T(¢,«) = t1 =%, See [1}, 25, 26] for more information on Ty,.

The following results in [I6] contain some basic properties of the derivative G§.

Theorem 2.3. Let I be an interval  CR, f: I — R and a € RT.
(1) If there exists D11 f at the point t € I, then f is GS-differentiable at t and
GRf(t) = T(t, )l 1Dl f(1).
(2) If a € (0,1], then f is G¢-differentiable at t € I if and only if f is differ-
entiable at t; in this case, we have G f(t) = T(t, &) f'(¢).
Theorem 2.4. Let I be an interval  CR, f,g: 1 — R and a € RT. Assume that
f, g are G}-differentiable functions at t € I. Then the following statements hold:
(1) af +bg is GF-differentiable at t for every a,b € R, and GF(af +bg)(t) =
aGLf(t) +bG%yg(t).
(2) Ifa € (0,1], then fg is G%-differentiable at t and G3(fg)(t) = f(t)GFg(t)+
gO)GT f(1)-
(3) Ifa € (0,1] and g(t) # 0, then f/g is GF-differentiable at t and G%(g)(t) =
QIS ORI QIS TION

g(t
(4) GZ(N) =0 for every A € R.
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(5) G%(t*) = #gll)t”_ (17 (t, a)l for every p e R\ Z~.

(6) GL(t™") = (—1)le] w t== 11Tt a) for every n € Zt.
Theorem 2.5. Let o € (0,1]; let g be a G$-differentiable function at t and f a
differentiable function at g(t). Then f o g is G$-differentiable at t, and G3.(f o
9)(t) = f'(9(t)) GFg(t).

In [I4], an integral operator is defined in the following way. Let I be an interval

I C R, a,t€landa€R. The integral operator Jg , is defined for every locally
integrable function f on I as

Ialf)0) = [

The following results appear in [I4].

Proposition 2.6. Let I be an interval I CR, a € 1,0 < a <1 and f a differ-
entiable function on I such that f' is a locally integrable function on I. Then we

have, for allt € I,
I7.a(GT(f)) () = f(t) = f(a).

Proposition 2.7. Let I be an interval I CR, a € I and o € (0,1]. We have

Gt (J2.a(£)) () = £(1)
for every continuous function f on I and a,t € I.

In [27], the integral operator J§ , is defined with T given by T'(t,a) = t'~*, and

[27, Theorem 3.1] shows that

G o o(F)(t) = f(t)
for every continuous function f on I, a,t € I and a € (0, 1]. Hence, Proposition
extends to any T this important equality.

The following result summarizes some elementary properties of the integral op-
erator J .

Theorem 2.8. Let I be an interval I C R, a,b € I and a € R. Suppose that f, g
are locally integrable functions on I, and ki,ks € R. Then we have
(1) J§ o (kLS + kag) (t) = k1 Jg , f(t) + kaJg ,9(t);
( ) if f> g, then J¢ ,f(t) > J% ,9(t) for everyt € I witht > a;
3) I f(t |<JTa|f|()f07" every t € I witht > a;

(4) Jo A dw = I f(8) = T8, f(8) = T2 F()(b) for every t € T.

Remark 2.9. The above results generalize Proposition 1, Proposition 2 and The-
orem 1 of [20], respectively, obtained with 0 < « < 1.

The following propositions are presented in order to serve as a basis for future
research.
Given a,b € I (b > a), let us denote by F, ; the usual inner product in L?[a, b],

Fou(f.9) /f
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Proposition 2.10 ([9]). Let I be an interval I C R, a,b € I witha <b and o € R.
The adjoint of I o i L?[a, b] with respect to the inner product F,; is the operator

b
A30s N0 = e [ S5) s

For theoretical completeness we show the following result.

Proposition 2.11. Let I be an interval I C R, a,b € I with a < b and o € R.
Then Jg , is a Hilbert-Schmidt integral operator on L?[a,b], and so, a continuous
and compact operator.

Proof. Let us denote by x , the characteristic function of the set A (i.e., x,(t) =1
if t € A and x,(t) = 0 otherwise). Then

t b
Fa00) = [ s o= [ Ktwrf(e) de,
with )
k(t,w) = X(au (w) Twa)
We have

b b ) b rb 1
k(t,w)|? dw dt < ——— dwdt
Jofmearasas | [ g

_ / Pboa

o T(w,a)? ’
since T'(w, a) is a positive continuous function on I. Thus, J§ , is a Hilbert—Schmidt
integral operator on L?[a, b], and so, a continuous and compact operator. O

3. GENERALIZED GRONWALL’S INEQUALITY

Next, we prove a generalized version of Gronwall’s inequality which will be
useful in the study of the stability of systems of generalized differential equations.
A version of this inequality was proved in [I].

Theorem 3.1. Let r, ¢, d and k be conlinuous functions on the interval [a,b],
d,k >0, and « € (0,1], such that

r(t) < c(t) + d(t)J7 o (kr)(t)
for allt € [a,b]. Then we have
r(t) < c(t) + d(t)Jqof’a(ck:e_‘]’(;va(dk))(t)eJ%va(dk)(t)
for every t € [a,b].
Proof. Let us define R(t) = J¢ ,(kr)(t). Thus, R(a) =0,
r(t) < c(t) + d(t)R(t)
for all t € [a,b], and Proposition [2.7] gives
GTR(t) = k(t)r(t) < c(t)k(t) + d(t)k(t)R(t) (3.1)
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for every t € [a,b], since k > 0. Let us define E(t) = e~/7.a(%®  Theorem
and Proposition [2.7] give

GTE(

G (e J%, dk))
= GF(—J¢ . (dk))(t) Je~ IT.a(dR))
—d(t)k(t) E(L).
Since R and E are G¢-differentiable on [a, b], Theorem and give
GT(ER)(t) = E(t)GTR(t) + R(1)GTE(t)
= EQ)GTR(t) — d)k(t)R(t)E(1)
< c(OR)E(R) + d)kE)R(E)E(?)
—dOERE)E(t) = c(t)k() E(1)
)R

for every ¢t € [a,b], since E > 0. Since E(t)R(t) is differentiable on [a,b] by
Theorem [2.3] we have that Theorem [2.8 and Proposition 2.6 give

J7 o(ckE)(t) = J7,,(GT(ER))(t)
= E(t)R(t) — E(a)R(a) = E(t)R(t)
for any ¢ € [a,b]. Thus, since d >0, E > 0,

J$ (ckE)(t)
r(t) < c(t) +d(t)R(t) < c(t) + d(t)TT
= c(t) + d(t)J§ , (cke™ 7.0l (1) /7.0l IR)D)
for every t € [a, b]. 0

The argument in the proof of Theorem [3.1] also gives the following converse
inequality.

Theorem 3.2. Let r, ¢, d and k be continuous functions on the interval [a,b],
d,k >0, and o € (0,1], such that

r(t) = c(t) + d(t)J7 o, (kr)(t)
for allt € [a,b]. Then we have
r(t) > c(t) + d(t)J:,(’{a(ck‘e_J%a(dk))(t)e‘]%va(dk)(t)
for every t € [a,b].
If ¢ > 0, then the conclusion of Theorem [3.I] can be simplified.

Theorem 3.3. Let r, ¢, d and k be continuous functions on the interval [a,b],
¢, d,k >0, and o € (0,1], such that

r(t) < et) +d()J7 . (kr) ()

for allt € [a,b]. Then we have

r(t) < c(t) + d(t)J$ o (ck)(t) e’T.al R
for every t € [a,b].
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Proof. Theorem [3.1] gives
r(t) < c(t) + d(t)J§ , (cke™T.a(R)) (1) e 7.0 (R D)
for every t € [a,b]. Since d > 0, it suffices to prove that
I o (cke™TaWR)) (1) < J2 (ck)(t) (3.2)
for any t € [a, b].

Since dk > 0, Theorem gives J%a(dk') >0, so e~ /7.a(dk) < 1. Since ck > 0,
we have cke™/T.a(F) < ck, and Theorem gives (3.2). O

The following result appears in [I4].

Lemma 3.4. Let ay,a,...,a, € (0,1], 2 = (z1,...,2,), I C R an interval,
Q CR"™ an open set, tg € I and xg € Q. Let F = (F1,...,F,): I xQ = R" be in
(C,Lip) on some open neighborhood of the point (ty,xq), and consider the initial
value problem

Grzj=Fjtx), 1<j<n, z(to) = o. (3.3)

Then there exists h > 0 such that (3.3) has a unique solution on the interval
[to — h,to + R N I. Furthermore, if & = R™ and F is in (C,Lip) on J x R™ for
each compact interval J C I, then (3.3) has a unique solution on I.

Let o € (0,1], a € R, tg > a, zg € R™, and F : [a,00) x R™ — R™ in (C, Lip) on
[a,00) x R™. Let us consider the initial value problem

Tx(t) = F(t,x), x(to) = . (3.4)

Lemma guarantees that has a unique solution on [a,00). The study of
boundedness of solutions of a differential equation, either generalized or not, plays
an important role in qualitative theory. In addition, the qualitative behavior of
solutions plays an important role in many real-world phenomena related to applied
research. Based on the previous results, we can obtain stability results for the
solutions of generalized differential equations.

Definition 3.5. If F(t,0) = 0 for every t > a, then the trivial solution = 0 of
is said to be stable if for any € > 0, there exists 6 = d(tp,€) > 0 such that
if |zo| < 0, then |x(f)| < € for every t > to; it is uniformly stable if there exists
d = d(e) > 0 such that if |zg| < d, then |z(t)| < € for every ¢t > tg > a.

Propositions 2.6 and [2.7] give the following result.

Proposition 3.6. Leta € (0,1],a € R, tg > a, xg € R™, and F : [a,00) xR™" — R"
in (C,Lip) on [a,00) x R™. Then the problem (3.4)) is equivalent to

x(t) = xo + J7 4 F'(5,2(5))(1).
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Theorem 3.7. Let o € (0,1], a € R and F : [a,00) x R®" — R" in (C,Lip) on
[a,00) x R™. Assume that F(t,0) =0 for every t > a, |F(t,x)| < k(t)|z| for every
t > a, x € R™, and there exists a continuous function k such that
= k@)
dt .
[ T
Then the trivial solution x = 0 of (3.4) is uniformly stable.

Proof. Let us define

© k(t
N :/ ®) dt < oo.
a T(t’ a)
Theorem Proposition 2.6l and k > 0 give, for every t > ¢y > a,
IS (ke*J%to(k))(t) eI Tt (R)(1) — IS4 (G%(_B*J%,to(k)»(t) eI Tt (K)(?)
— (R0 0) _ IRy (D)) o951y (D)
— (1= e ) I (IO
— T (R _ ¢
< elTa(M®) _q
< eV —1.
Fix e > 0 and let = z(t) be the solution of the Cauchy problem (3.4)), where
o satisfies
lzo] <8 =d(c) = e Ve, (3.6)
Proposition [3.6| gives
z(t) = xo + J7 4, F(s,2(s))(t)
for every ¢ > to. Thus, Theorem [2.8] gives
()] < |wol + | JF4, F(s,2(5))(t))|
< lwol + I, [F(s,2(s))] (¢)
< lzol + I 4, (K [2])(2)
for every t > ty. Hence, Theorem (13.5) and (3.6) give
‘fE(t)| < |IO| + |1‘0| J%7t0 (ke—.]%,t(] (k))(t) eJ%,tO (k)(t)
< |wo| + |wo| (€N — 1) = |zl N <

for all t > tg. Since ¢ does not depend on ¢, the trivial solution of ([3.4)) is uniformly
stable. (]

4. THE GENERALIZED BERNOULLI DIFFERENTIAL EQUATION

The Bernoulli differential equation stands out as one of the most crucial non-
linear equations, playing a pivotal role in solving intricate mathematical problems.
Its practical significance is evident in its ability to describe and analyze phenom-
ena across various fields such as physics, biology, and engineering. Specifically, it
enables the examination of flow behaviors in systems where pressure, velocity, and
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height play crucial roles. Moreover, it serves as a cornerstone for studying system
dynamics, enzyme kinetics, and population dynamics [10, [IT], 35].

The Bernoulli differential equation has garnered recent attention within the
realm of global fractional operators, as evidenced by studies such as [I2]. This
section builds upon prior research by examining the Bernoulli differential equa-
tion through the lens of local operators, including both conformable and non-
conformable approaches. Furthermore, this research raises the prospect of compar-
ing the effectiveness of both global and local methodologies in practical applica-
tions, as illustrated, for instance, in the study [23].

In this section we introduce the generalized Bernoulli differential equation, de-
fined as

Gry+pt)y=qt)y”, n#0,L (4.1)

We will start by presenting the basic results of the stability theory for this
equation.

First, we will pose the problem for a much more general system than :

Gry(t) = f(ty(t)), (4.2)
y(to) = Yo, (4.3)

where f € C(Ry xR, R), to > 0. It is further assumed that for (¢g,yo) € int(R4 xR)
the initial value problem (4.2)—(4.3)) has a solution y(t) € C*(I) for all t > to > 0.
In addition, it is assumed that f(¢,0) =0 for all ¢t > t5 > 0.

Several types of stability can be discussed for solutions of differential equations
(of integer or fractional order) describing dynamical systems. The most important
type concerns the stability of solutions near an equilibrium point. This can be
discussed by Lyapunov’s theory. In simple terms, if solutions that start near an
equilibrium point y. stay close to y. for all ¢ then y. is Lyapunov stable. More
strongly, if y. is Lyapunov stable and all solutions starting near y. converge to ye,
then y. is asymptotically stable.

The concept of exponential stability, applicable to linear equations or systems,
ensures a minimum rate of decay. This implies an assessment of how rapidly the
solutions converge.

The stability of a solution of generalized differential equations can be defined in
exactly the same way. The following results form part of a theory of stability for
equations of the type of . First, we state a lemma that will serve as a basis
for obtaining the desired stability results.

Lemma 4.1 ([9]). Let I be an interval with [tg,00) C I and « € (0,1]. Let p be a
continuous function on [ty,00), and consider the linear equation

GTy +p(t)y = 0.

(1) Ifliminf; e J3, (p)(t) > —00, then the trivial solution y(t) = 0 is stable.
(2) If limgsoo J3 () (t) = 00, then y(t) = 0 is asymptotically stable.

Now consider the initial value problem

Ty + o)y =0, y(to) = yo, (4.4)
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and note that the trivial solution y(t) = 0 of (4.4) is stable if and only if
J7o(p)(+00) = +00. (4.5)

By means of the properties of the integral operator, we can then see that the general

solution of (4.4) is
y(t) = yoe 0PV,
from which (4.5)) follows easily.
We are now in a position to establish the main results on the stability of equa-

tions of type (4.2]).
Theorem 4.2. Consider the differential equation

Gry+pt)y=g(t,y), t>0, (4.6)

where p(t) is a positive and continuous function such that 0 < p < p(t), and g is a
continuous function with g(t,0) =0 for all t. If
lg(t, 2)]

li —— =0 4.7
lpaap 22 0 @

then the trivial solution y(t) = 0 is an asymptotically stable solution.

Proof. Choose any ¢ € (0,p). From (4.7)), there exists 6 > 0 such that
sup|g(t, z)| < elz| for all |z| < 4.
>0

Let yo € (0,6). Since no two solutions can intersect, we have y(t) > 0 (or y(t) < 0)
for all t > 0. Consider first that y(¢) > 0; taking y(to) = yo we obtain from
—p(t)y + g(t,y) < —py + ey < 0, i.e., the solution y(t) is decreasing. Therefore,
we have GZy(t) < —(p — €)y, but this is a particular case of , so we have
0 < y(t) < yoe T ®P=D® 5 0 as t — +o0. Similarly, we can prove the y(t) — 0
as t — 4oo if yp € (—4,0). Hence the trivial solution y(¢) = 0 is asymptotically
stable. O

The previous theorem allows us to establish conditions to ensure the asymptotic
stability of the Bernoulli equation (4.1). In this way we have the following corollary.

Corollary 4.3. Under the assumption of Theorem on the function p(t), let q(t)
be a bounded function; then the trivial solution y(t) = 0 of (4.1)) is asymptotically
stable.

The following result shows how the integral operator Jf o can be applied in order
to solve generalized differential equations.

Theorem 4.4. Let p and q be continuous functions on an interval I C R, a € I,
a € (0,1] and n € R\ {1}, and consider the generalized Bernoulli differential
equation

Gry+pt)y = q)y". (4.8)
Then the following statements hold.
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(1) For each C € R, the function

y(t) = [ OTEDO (1= m)Jp (g D) (1) + )T (a9)
is a solution of the Bernoulli generalized equation (4.8)).
(2) For each tg € I and yo € R, let y(t;to, yo) be the function in (4.9) with
C = yé—"e(lfn)J%a(p)(to) —(1- ”)J%,a (qe(lfn)l%,a(p))(to).

If (yg ™Y~ =y and y(t;to, yo) is defined in some right or left neigh-
borhood U C I of tg, then y(t;to,yo) is a solution of (4.8) on U satisfying
the initial condition y(to;to, yo) = Yo-
(3) For eachty € I andyg > 0, there exists a unique solution of (4.8)) satisfying
the initial value y(to) = yo, given by y(t;to,yo)-
(4) If n € (1,o0) NQ and 1/(1 —n) = r/s with s an odd integer, then for
each tg € I and yo € R there exists a unique solution of (4.8) satisfying the
indtial value y(to) = yo, given by y(t;to, o).
Proof. For each C' € R, let us define the function
2(t) = e~ (177D ((1— n).]rj‘f,a(qe(l_")‘]%va(”))(t) +0).
Therefore, y = z/(1=™) Theorems and and Proposition give
GFz = (1=n)G3(=Jg 4 (p)) () e~ 177 P
x (1= n)Jg ,(qget =77 P)) (1) 4 C)
+(1— n)ef(lfn)J%,a(p)(t)G%(Jqog,a(qe(lfn)i%,a(p)))(t)
= —(1—n)p(t) e—(1=n)J7 ,(p)(?)
% (1 =) o (qe =P (1) + C)
+ (1 = n)e =2 E)O) (1)) I7.a (P)(B)

= —(1—n)p(t)z + (L —n)q(t).
Hence, Theorem 2.5 gives
1
1—n
1 n —n
=157 /A= (—(1 = n)p(t)z + (1 = n)q(t))
=y" (~pt)y' " +q(t))
= —p(t)y +at)y",
and y is a solution of the Bernoulli generalized equation (4.8)).
If (yg ™) (=" = yo and y(t; to, yo) is defined in some right or left neighborhood
U C I of ty, then it is clear that y(t;to,yo) is a solution of (4.8) on U satisfying
the initial condition y(to;to, ¥o) = Yo-
By Theorem the generalized differential equation (4.8]) is equivalent to

GTy = z"/“*")G%z

y = p(t)y + ﬁ q(t)y" =: f(t,y).
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Since yg > 0, the function f(¢,y) is continuous in a neighborhood V' of (¢, yo) and,
also, it is Lipschitz in the second variable in V. Therefore, Picard’s theorem gives
that there exists a unique solution of satisfying the initial value y(t9) = yo.
Since yo > 0, we have (y5~")"/(1=") = y4, and the second item of this theorem
gives that this solution is y(¢; o, yo)-

Assume now that n € (1,00)NQ and 1/(1—n) = r/s with s an odd integer. For
each yg € R, the function f(¢,y) is continuous in a neighborhood V' of (g, yo); since
n > 1, f is Lipschitz in the second variable in V. Hence, Picard’s theorem gives
that there exists a unique solution of with y(to) = yo. Since 1/(1 —n) =r/s
with s an odd integer, we have (yéfn)l/(l_") = yq for every yg € R, and the second
item of this theorem gives that this solution is y(¢; o, yo)- O

Remark 4.5. The results obtained here, relative to the Bernoulli equation, gen-
eralize and complete those in [30], which were derived using the conformable de-
rivative of [27].

4.1. Examples. The generalized derivative can be considered as a good tool for
solving certain types of problems. Therefore, by treating the Bernoulli differential
equation with this approach, we gain a greater ability to study and solve such
problems, as will be shown in the following examples.
Consider the functions p(t) = ¢(¢) = 1, the interval I = [0.5,2] and n = 2.
According to equation (4.8]), we obtain
fy+y=y". (4.10)
Now consider the function T'(t,«) = t'=* and C = —1; then by Theorem we

obtain the solution
o 0.5y —1
y(t) = (1 —2 e ) .

The solutions for different values of a are shown in Figure

FIGURE 1. Solution of equation (4.10) with T'(¢t,a) = 17 for
a=0.1,0.3,0.5,0.7,0.9, 1.
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As we can see, the solutions approach the curve associated with the value of
«a = 1, which corresponds to the case of the Bernoulli equation with derivative of
order one. This is due to the fact the kernel T'(t,«) = '~ is associated with a
generalized conformable derivative; however, this does not happen in all cases, as
we will show in the next example.

Now if we choose the functions p(t) = ¢(t) = ¢, the interval I = [—1,1] and
n = 2, replacing these values in equation (4.8]) we obtain
Gy + ty = ty°. (4.11)

Then, if we choose the kernel T'(t, ) = ¢t~ and C = —1, by Theorem [4.4| we obtain

s(a+2) , 0.5(0F2) >1

y(t) = <1 —2e at?
The function

t2+e(o.5)2 -1
yr(t) = (1 e T ) (4.12)

is the solution associated to the Bernoulli differential equation with the classical
derivative. We wanted to show both solutions to demonstrate how, in this example,
the solutions of the generalized equation are approaching the solution associated
with a = 0. But they differ from the solution of the equation using the classical de-
rivative, because a non-conformable kernel has been used. In Figure [2the equation
and solutions associated to for different values of o are shown.

0

Y gy ety
P ity e EHT A
'-—-,{.}ﬁﬂi"'fﬁs’mﬁﬁ Vs Fipe e_-frf:‘-‘f‘-’f""ﬁﬁ%-—-""""'

g i W i Sy Sy W Rl g

-0.17

-03 r

04— e Eo e 4

= ¥ Classical
a=0.1
a=0.3
a=0.5
06 b a=0.7
a=0.9
a=1
07 . . . . . . . | \
-1 08 -06 -04 -02 0 02 04 06 08 1

0571

FIGURE 2. Equation (4.12)) and solution of equation (4.11) with
T(t,a) =t~ for « = 0.1,0.3,0.5,0.7,0.9, 1.

As we can see, one of the advantages of considering the generalized derivative is
precisely the freedom to choose the kernel in such a way that it is appropriate for the
study and solution of the problem under consideration. In addition, it generalizes
the definitions of the operators mentioned at the beginning of this paper.
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5. A FINITE DIFFERENCE METHOD FOR THE GENERALIZED BERNOULLI
DIFFERENTIAL EQUATION

Numerical methods are usually employed to solve differential equations for which
there is no exact solution. In other cases, even when an exact solution exists, diffi-
culties may arise, such as integrals that cannot be expressed in terms of elementary
functions. That is why the objective of the numerical method presented below is
to provide an approximate solution in cases where, even with an exact solution,
the solution is not easy to visualize. The second example, given by equation ,
is one of these cases.

The finite difference method is often used to solve differential equations of various
orders with boundary conditions. In general, first the differential operators are
replaced by appropriate quotients in differences and a matrix is constructed, which
is usually tridiagonal. Then the boundary conditions that form the first and last
row of the matrix are added. Finally, the system of equations is solved by an
appropriate method that minimizes the approximation error. We have intended to
follow this line of thought to develop our method. In this case, since we do not
have any information at the right end of the interval, we cannot proceed as in the
usual finite differences.

So, the strategy will be to transform the process to an iterative method based on
the idea of the fixed point theory, then use the two-point finite difference formula to
find the first value on the right using the initial condition as the initial value, then
the three-point difference formula to generate the next three values and achieve
a better order of convergence, and then finally move to the five-point difference
formula with an order of convergence O(h*) to finish the iteration.

It is worth mentioning that the method can be easily extended to other types
of non-linearities, and it can also be divided into three independent methods that
work with different degrees of convergence. By switching from forward to backward
difference, one can decide whether to solve a nonlinear equation or not, although
it is necessary to choose between speed and convergence.

The equation

{ Fy+pt)y=a(t)y", a<t<b, 5.1)
yla) =p '
is, according to Theorem [2.3] equivalent to
Yy + (o) p(t)y = T(tl’ o) q(t)y".
First, we select an integer N > 0 and divide the interval [a, b] into N + 1 equal
subintervals whose endpoints are the mesh points t; = a+ih fori =0,1,..., N+1,

where h = (b—a)/(N +1) and y; = y(t;).

Since the only information we do have is the yo = y(a) = 8 value given by the
initial condition, we will start by using the two-point forward difference formula to
determine y;, with truncation error O(h)

v = LNV D) <o <titm),
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By making y (t;+1) = y(t; + h), the equation (4.8) can be written as

() = (8] 700 ) = 2 e
(t2) = T U(6) + s )"+ o(t) (:2)

Starting at ¢ = 0, the equation defines an iterative process that converges to
the solution; this is the well-known Euler method.

We can also use the finite difference backward formula (replacing h by —h).
Then the iterative process is defined as follows:

T(t,0) " " Tty a) Y
At each step of the iterative process, we must solve a nonlinear equation to deter-
mine y(¢;). The fsolve command in Matlab R2022b can be used for this purpose,
taking the initial condition as the starting approximation, which is then updated
using the previous point.

The equation improves the convergence with respect to the equation
in exchange for consuming more time. So we must decide between a better conver-
gence or a shorter execution time.

We have already found a solution to our problem, but recall that our goal was to
use one of the above equations to find y;. Using the three-point midpoint difference
formula, with truncation error O(h?), we can find ys:

y(ti) —y(ti-) + (t:)™ = 0. (5.3)

2
V(1) = 5 lult+ 1) =yt — W] - TP (&) (—h <& <ti+h)

and since we know yo and y; and taking ¢ = 1 to start, the equation (5.1]) becomes

g I 60) = y(t0)] + 7R w0 = 0w,
Yy (tiv1) = —Zhplt) Zhq(ts) y(t)" +y(ti-1). (5.4)

T o) " T T, a)
With (5.4) we again obtain an iterative process that converges to the solution, with
better results than previously found. Now let us try with the three-point backward
difference formula
y'(t;) = o [By(t:) — dy(ti—1) +y(ti—2)] — 3 (&1) (ti <& <t;+2h).
The process is determined as follows:
T(t’ia Oé) ’ T(tla OZ)
Starting at ¢ = 2 we must again solve for y(t;) at each iteration and the same effects
as above will be obtained.

Finally, let us use the initial condition yg, take y; from the first iteration of

(5.2) or (5.3), and y3 and y4 from (5.4) or (5.5 to develop a last method from the

3y(ti) —4y(ti—1) +y(ti—2) +

(t:)" = 0. (5.5)
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backward five-point finite difference formula with truncation error O(h*). It is not
recommended to use a higher order approximation scheme due to Runge’s phenom-
enon; instead, other techniques including for example irregular grids, Chebyshev
polynomials or spectral methods can be used.

The backward five-point difference formula is determined by the formula
1
y'(t:) = 155, [25y(t:) — 48y(ti — h) + 36y(ti — 2h) — 16y(t; — 3h) + 3y(ti — 4h)]

h4
— (&) (ti <& <ti+4h).

We then obtain
25y(t;) — 48y(ti—1) + 36y(ti—2) — 16y(ti—3) + 3y(ti—a)
T(tia O{) Y T(tw Oé)

which again must be solved using some method for nonlinear equations.

y(tl)n =0,

5.1. Some numerical examples. Let us solve again equation using this
variation of the finite difference method (FDM). Table |1| and Figure [3| show the
solution and the error between the finite difference method and the exact solution of
equation for = 0.5. We have zoomed in on Figure |3|to show the difference
between the curves.

Pts Exact Sol FDM Error

0.5 -1 -1 0
0.500299940011998 —0.999152308016293 —0.999152149990093 1.58026200125505e-07
0.500599880023995 —0.998305946878573 —0.998305948338594 1.46002121503841e-09

1.99970005998800  —0.138412976596618 —0.138413036296161 5.96995426982439e-08
2.00000000000000  —0.138379560668148 —0.138379620351763 5.96836149668878e-08

TABLE 1. Comparison between the FDM and the exact solution
of (4.10) with N = 5000 interval divisions.

The above comparison shows that the proposed finite difference method is in-
deed feasible and that it delivers a solution quite close to the exact solution with
considerably small error and low run time. In the following example we will show
that the method can also be applied to more complicated problems, where it is
sometimes difficult to obtain an exact solution.

There are cases in which the functions p(¢) and ¢(¢) make the use of Theorem
difficult because complicated integrals must be solved; herein lies the usefulness of
numerical methods. If we choose the functions p(t) = e_tQ, q(t) =t, I =[-3,3]
and n = 2, we get the equation

Goy+ ety =ty (5.6)
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FiGURE 3. Comparison between the FDM and the exact solution

of (LT0).

Taking T(t,a) = e~ and C' = 1, we can find the solution to the previous equa-
tion through the FDM. Since we do not have an exact solution for comparison, we
may approximate the integrals in Theorem [1.4] by a numerical integration method.
This will allow us to validate again the proposed numerical method, as we do not
have an explicit solution of the generalized equation. Table [2| shows both solutions
for a = 0.5. Graphically, the difference between the two solution curves is hardly
noticeable. Figure [f] displays the solutions for differents values of « for the FDM.

Pts Integ FDM abs(FDM-Integ)

-3 1 1 0
—2.99880023995201 0.984132376988178  0.983900701320463  0.000231675667714537
—2.99760047990402 0.968775560311577  0.968798608504813  2.30481932365079¢-05

2.99880023995201 0.0115194694289867 0.0115187854523517 6.83976635032849e-07
3.00000000000000  0.0115195756295232 0.0115188916402543 6.83989268873003e-07

TABLE 2. Comparison between FDM and aproximation of the in-
tegrals in the exact solution.

In this example we can see that the solutions approximate in ascending order
the case a = 1 with the kernel T'(t, ) = ¢! =®)* that corresponds to a conformable
derivative.

We have been able to compare two different approaches, one in which the deriva-
tive is approximated by an appropriate difference quotient and another in which the
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FIGURE 4. Solution of equation (5.6) with T(t,a) = (=)t for
a=0.1,0.3,0.5,0.7,0.9, 1.

integral has been approximated within the explicit solution. The approximation
of the integral has been performed by numerical methods using Matlab R2022b.
Although it has proved to be an alternative to FDM, it has required much more
time to deliver the solution, showing an increase of time as the complexity of the
integrals and the number of nodes increase.

The examples shown above prove that the proposed numerical method (FDM) is
a valid alternative when complicated integrals appear in the exact solution, thereby
broadening the range of problems that we can solve.

6. CONCLUSIONS

In this article we proposed and solved a generalization of the Bernoulli differ-
ential equation under the generalized conformable derivative approach. We also
found solubility conditions and results about the qualitative behavior of the trivial
solution. To this end, a generalization of Gronwall’s inequality was proved as well
as its reciprocal and a particular case of this inequality. Thereafter, we showed by
means of examples how this generalized derivative approach has some advantages
over other definitions; for example, this derivative generalizes certain definitions
of fractional derivative known in the literature and further. Furthermore, it al-
lows us to choose the kernel of the derivative depending on the problem under
consideration, with the goal of solving different problems under different deriva-
tives approaches. We also proposed and tested the reliability of a finite difference
method by means of examples. We exposed the case in which the explicit solution
involves complex integrals. Finally, we compared the solution obtained by (FDM)
with the approximation of the integrals in the explicit solution of the generalized
equation.
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