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THE POINTILLIST PRINCIPLE FOR VARIATION OPERATORS
AND JUMP FUNCTIONS

KEVIN HUGHES

ABSTRACT. Iextend the pointillist principles of Moon and Carrillo-de Guzman
to variational operators and jump functions.

1. THE POINTILLIST PRINCIPLE

In [I1], Moon observed that, for a sequence of sufficiently smooth convolution
operators and any g > 1, the weak (1,¢) boundedness of their maximal operator
is equivalent to restricted weak (1,¢) boundedness of the maximal operator. In
this paper, the goal is to extend this theorem to variational operators and to jump
functions. I now recall a couple definitions in order to make this precise.

For a sequence of operators (Ty,)men, define their maximal function

M(Tp f(x) s m € N) := sup [T f(2)]

for f:RY — C and z € R?. Suppose that p,q > 1. An operator T is weak-type
(p, q) with norm C' if it satisfies the inequality

1T fllpaee < C|fllre forall f e LP, (1.1)

where || f[lzo = ([ [f(x)Pdz)""” and [lg] o := supysq tl{z € RY : |g(a)| = t}]V/a
for functions f,g : R? — C, with the usual modifications made when p or ¢ is
infinite. Here and throughout, C' is non-negative. In this paper, we will restrict our
functions to be defined on R? and will work with the Lebesgue measure thereon. So,
I will rarely include this in the notation, and I will also let | X| denote the measure
of a finite (Lebesgue) measurable set X in R?. Additionally, an operator T is said
to be restricted weak-type (p,q) with norm C if holds for each function f
which is the characteristic function of a finite measurable set.

Moon’s theorem. Suppose that (T)men is a sequence of convolution operators
given by Tonf = f * gm with g,, € L*(R?) for each m € N. For any q¢ > 1,
M(T,f(z) : m € N) is restricted weak-type (1,q) with norm C if and only if
M(T, f(z) : m € N) is weak-type (1,q) with norm C.
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The essential difference between the two distinct weak-types lies in the class of
input functions used to define them. The class of all L? functions serve as input to
the (unqualified) weak-type inequalities while its subclass of characteristic functions
of finite measurable sets serve as input to the restricted weak-type inequalities.
In particular, if an operator is weak-type (p, ¢) then it is automatically restricted
weak-type (p, ¢). Moon’s theorem says that the converse is true for certain maximal
functions when p = 1. The converse may fail for linear operators when p > 1; see
[11, page 149].

In [4], Carillo-de Guzmén gave a version of Moon’s theorem where the class of
characteristic functions is replaced by linear combinations of delta functions. To
state their result, we introduce more terminology. Let d, denote the (Dirac) delta
function at the point z € R?. In analogy with restricted weak-type, let us say
that an operator 7' is pointed weak-type (p,p) with norm at most C if for any finite
subset of points X C R¢, we have the inequality

‘{x €RY:|T(S,ex 0y) ()] > A}( SOH#X/N forall A>0.  (1.2)

This inequality and definition is to be interpreted as defined only when the oper-
ator T" makes sense on delta functions. For instance, this makes sense when T is
taken to be the maximal function M (f * g, (x) : m € N) formed from a sequence

of L' functions (g, )men, in which case Dyex Oy * gm(x) = 2 e x 9(z — ).

Carrillo-de Guzmaéan’s theorem. Suppose that (Tp,)men is a sequence of con-
volution operators given by Ty, f = f * gm with g, € L*(RY) for each m € N.
For anyp > 1, M(T,,f(x) : m € N) is weak-type (p,p) with norm at most C if
M(T,. f(z) : m € N) is pointed weak-type (p, p) with norm at most C. Furthermore,
the converse is true if p = 1.

Pointed weak-type inequalities form a third distinct class of inequalities because
finite sums of delta functions serve as input to the pointed weak-type inequalities;
note that delta functions are not LP functions for any p and give a distinct class of
input functions. The converse to Carrillo-de Guzméan’s theorem can fail for p > 1;
see [4 page 121].

Grafakos—Mastylo extended Moon’s theorem to the multilinear setting in [5]
while Carena extended Carrillo-de Guzman’s theorem to more general metric mea-
sure spaces in [2]. See [7] and [9] for more extensions. It is this collection of theo-
rems we refer to as the ‘pointillist principle’, taking its name from the Pointillism
movement in art.

The purpose of this short note is to extend Moon and Carrillo-de Guzman’s
instances of the pointillist principle to variational operators and jump functions.
The pointillist principle led to a new proof of boundedness of the Hardy—Littlewood
maximal function in [3] and the best constant for the Hardy-Littlewood maximal
function in one dimension in [8], and it is my hope that this work will be used
to give new proofs of the LP boundedness of the variation of Hardy-Littlewood
averages. I now recall these operators and discuss a few of their basic properties.
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POINTILLIST PRINCIPLE FOR VARIATIONS 579

Let r € [1,00) and R C N. Suppose that (f,,)men is a sequence of Lebesgue mea-
surable functions. Define pointwise the r-variation of the subsequence (f,,)mer:

L 1/r
V(o) sm € R)i=sup (3 Uf@) = frn@l) (03

i=1

where the supremum is over all finite, increasing subsequences (m;) in R. One
makes the usual modification using the essential supremum to extend to
r = oo. Note that V,.(+) is sublinear in its argument. For A > 0, define the jump
function Ny (fm(x) : m € R) as given by the supremum over M € N such that there
exists a sequence so < tg < 51 < t; < -+ < sy < tpr in R with |fs, () — fi, ()] > A
for all 0 < ¢ < M. Unlike the variation operators, the jump functions fail to be
sublinear. However, we note the almost sub-additivity of the jump functions:

Na([frn + gm](@) :m € R) < Ny, (fm(2) :m € R) + Ny (gm(z) :m e R) (1.4)

for A1 and Ay positive with Ay + Ao = A.

For present purposes, we are most interested in these objects when the functions
fm = T f for a sequence of operators (T),)men e.g., naturally occurring families
of linear operators in probability and analysis such as expectation operators from a
martingale or Hardy-Littlewood averages. The main problem becomes establishing
the LP boundedness of the associated variation operators and jump functions.

The variation operators are connected to the jump functions by the inequality

Na(Tonf(z) :m e R) <ANT[Vo (T f(z) :m e R)|"

for each r > 1. Surprisingly this can be reversed on average in LP(R?) for 1 < p <
oo when r > 2. In practice the LP boundedness of V5 often fails. However, the
jump function Av/Ny may still be bounded, in which case it acts as a surrogate
‘endpoint’ operator for Va; see [6]. The variation operators are related to the
maximal functions by

Voo (Tinf(x) :m e R)=2M (T, f(x) :m €R)
< O Vau (T f (@) - 11 € R) + Ty ()]

for any mg € R. Because of this inequality, we may henceforth assume that r is
finite. On the one hand, V. f(x) increases as r decreases so that its LP-boundedness
becomes more difficult to prove. On the other hand, the jump inequalities and
variational estimates give quantitative versions of pointwise ergodic theorems. For
a more thorough discussion of variations and jump functions, see [, 12 [6] [10].
Our first theorem generalizes Moon’s theorem to variations and jump functions.

Theorem 1.1. Suppose that (Tp,)men s a sequence of convolution operators given
by Tonf := f * g with g, € LY(R?) for each m € N. For any q,7 > 1, V,.(T)n f
m € N) is restricted weak-type (1,q) with norm C if and only if V.(T,nf : m € N)
is weak-type (1,q) with norm C. Moreover, A\/Nyis restricted weak-type (1,q) if
and only if \\/Nyis weak-type (1,q).
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We also prove the Carrillo-de Guzmaén version of Theorem [T}

Theorem 1.2. Suppose that (T, )men is a sequence of convolution operators given
by Tonf := [ * gm with g, € LY(R?) for each m € N. If p,r > 1 and V,.(Tpnf : m €
N) is pointed weak-type (p,p) with norm C, then V(T f : m € N) is strong-type
(p,p) with norm at most C. Moreover the same is true for the jump functions

AV/Ny.

We can extend Theorem [I]] to a slightly more general set-up. In addition
to working with convolutions of L' functions, we will work with convolutions of
smoothing, possibly singular, measures. This extension appeared for the maximal
function of lacunary dilates of a smoothing measure in unpublished work of Seeger—
Tao-Wright connected with [13]. Inspired by the set-up of [14], we use a weak
version of condition (2) of Seeger—Wright’s Theorem 1.1 in [14]. Let (tm)men be
a sequence of finite measures of bounded variation and let T;,, denote convolution
with f,,,. Assume that, for some fixed p > 1 and for each M € N, we have

sup || T © Psillpr—rr = 0(1) as k — oo. (1.5)
m<M

Here, and throughout, P, denotes a smooth Littlewood—Paley ‘projection’ operator
adapted to frequency band of frequency size 2¥. To be precise, let 111, < ¢ <

1[_2,5) be a smooth function on R. Define by the multiplier Pk( ) = o(|€]) — P(2(€)).
Then for a function f : R* — C, Py f = Pk f the Fourier transform of P f has
support in {J¢[ € [2571, 2541} while Y, 6(16]) — #(2l¢]) = 1 for € € RY so
that >, ., Pef = f in many senses. We write P<yf = > ) Pjf and Psif =
> >k P;f. As a motivating example one may consider the lacunary spherical
averages given by the measures p,, := ogm for m € N, where o, is the spherical
measure on a sphere of radius r > 0 normalized to have mass 1. It is known that
| Prpir |l 2 (rey S (1+r2*k)% for d > 2 so that is satisfied for these examples.
We have the following ‘smoothing’ version of Moon’s theorem and Theorem [T1]

Theorem 1.3. Suppose that (T,,)men is a sequence of convolution operators given
by Ton f = [*pm, where ppy, is a finite measure of bounded total variation satisfying
the smoothing property . for each m € N. For any q,v > 1, Vo.(Tyf : m € N) is
restricted weak-type (1, q) with norm C if and only if V(T f : m € N) is weak-type
(1,q) with norm at most C. Moreover, A\/Nyis restricted weak-type (1,q) if and

only if A/ Nxis weak-type (1, q).

We close the introduction with a little bit of notation that will be useful in the
proof of our theorems. First, f(z) < g(x) if there exists a constant f(z) < Cg(x)
for some implicit constant C' > 0. Second, for a subset F C R?, let 1 denote the
indicator or characteristic function of F.

2. MOON’S THEOREM FOR VARIATIONS

The proof of Moon’s theorem hinges on how to approximate simple functions.
The following proposition is implicit in [I1]. It says that the set I. approximates f
very well, in the sense that it has the same size as f and it is close to the convolution
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of f with a prescribed finite sequence of smooth functions. Since we will use it in
the proof of Theorem [I.I} we include its proof for completeness.

Proposition 2.1 (Moon’s pointillist principle). For a finite sequence (hy)mem
of CY(RY) functions, if f is a simple function on R?, then for any ¢ > 0, there
exists a set I. C supp(f) such that

(D) Al oo Hel = A1l 1
2) |f * hin(@) = (Il g 12.) * b ()| < €[l fll 1 for m € [M] and all z € R?.

Proof of Proposition [2.1] By the scaling homogeneity of the problem we may nor-
malize ||f|,~ = 1. Let f = Ele ar1lp, be a simple function with coefficients
ar € R and each set F}, C R? of finite Lebesgue measure. We may assume that
the F} are open balls with diameter at most § > 0 a small parameter that we will
optimize later. Let Iy be any open ball in F} such that |Ix| = ax |Fx|. Now set
I = Ul so that || f|l ;. 1| = |1].

We want to show that the difference between f and 1; = ||f|| « 17 is small.
First note that

Pt = [ S0t (e o) dy

:Zak/ hm('r_y) dy
k Fy
= ap [Fi| ho (2 — i)

k

= > U F e il B = )
k

= k| hom (& — )
k

for some y € F} since the h,, are smooth by the mean value theorem. Similarly,
since Iy, C F}, we can write

L) = [ S0 @l =) dy
k

PEREL
= 3 Uil e = i)
k
for some yj, € Ij. Therefore we have the pointwise estimate
|f s han () = 11 5 han (2)] = ’ D Tkl (@ = ) = Y |kl o (2 — ) dy
k k

< Z | - [hn (2 = y) — hn (2 — 1) -
k
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582 KEVIN HUGHES

Since the functions h,, are smooth and M is finite, we can choose § small enough
so that |y, (2 — yk) — hm(z —y},)| < € for each 1 < m < M. Take I. to be I to
conclude the proof. O

We will make use of the following inequality multiple times.

Lemma 2.2. If1 < p,r < o0 and (fm)me[m) i a finite sequence of LP-functions,
then

IV (fn = m € [M])]| e < 2M* s [ frnll - (2.1)
me

Proof. Fix 1 < p,r < co. First note the pointwise inequality

Vofm(a) :m € (M) S2M sup |fo(a)]|.

me[M]
This inequality follows from using the fact that V. increases as r decreases and then
applying the triangle inequality to V;. Next take LP norms, replace the supremum
by a sum, and use the triangle inequality to find that

IVolfon € IMDIlsr < 2M | sup (gl <202 sup | funllur.
me[M] Lr me[M]

This is the desired inequality. (]

With (2.1)) and Proposition in hand, let us prove Theorem

Proof of Theorem [I.1] Weak-type obviously implies restricted weak-type so we only
prove that restricted weak-type implies weak-type. Fix ¢,r > 1. By monotone con-
vergence, reduce to the truncated variation operator V,.(f*gm (x) : m € [M]) where
the supremum is over all finite, increasing subsequences of [M] := {1,..., M} as
long as our bounds at the end are independent of M. Normally one would also
reduce to simple functions; however, we cannot do this since we do not yet know
that the variation operator is continuous. Assume for now that f is a simple func-
tion, and we will remove this restriction at the end of the argument. By dilational
symmetry of L*(R?), normalize our simple function so that ||f||;. = 1. Let A > 0.

Let e > 0. Our first step is to approximate g,, € L*(R%) by smooth h,,, € L*(R?).
We can do this so that ||g,, — Al 1 < € for each m € [M]. Then, for each z € R,

|f# (gm — hin) (@) < || fll oo (|9 — hanll 2 <€
Applying this and the inequality (2.1)) with f,,, := f * [gm — hs] and p = co implies
that
IV (f * [gm = han] : 0 € [M])[| 10 < 2M7e.
Apply Proposition to find a subset I. C supp(f) such that |I| = ||f| ..
and satisfying the inequality |f * hy () — 15, * hyp(2)] < € simultaneously for each

m € [M] and every € R%. This latter condition implies that for any my, ms € [M]
and = € R?,

((f = 12) % hany () = (f = 11,) % Ty (2)] < 26
Applying this and with f, := [f — 11.] * hy, and p = oo implies that

|Vi([f = 11.] % b = m € [M]))|| o < 4M3e.
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POINTILLIST PRINCIPLE FOR VARIATIONS 583

Let 6 € (0,1) and choose € = §/(8M?). The above inequalities imply that
KVi(f * gm(x) s m € [M]) > XA+ 26} < {Vo(f * [gm — hm](2) : m € [M]) > 6}|
+ {Vallf = 11 % hin(2) - m € [M]) > 6}
+ {Ve(Lr, # hin(2) 2 m € [M]) > A}|
= {Vi(A1, % hm(x) :m € [M]) > A} .
Applying our hypothesis that the variation is restricted weak-type (1, q), we find
KVe(f * gm () : m € [M]) > A4 26} < CAT9 || = CA?[[f]| 1 -

Taking § to 0, we obtain the desired bound for simple functions.

We extend our estimates to f in L' (R?%). Find a simple function s := Zle arlp,
where the subsets Fr C R? have finite Lebesgue measure and ||f — s||p1(ra) < &
where § € (0,1) is a parameter which we will optimize in a moment. The bound

(2.1) implies
Vo (T (f = 5) :m € [M])||2 < 2M2 sup | Tpn(f — 8)]|10-
me[M]
Young’s inequality implies that [|T,,(f — s)||r: < 0||gm||z1 for all m. Therefore,
[Ve(Ton(f = 5) :m € [M])| 1 < 2M?6 sup |lgm |1
me[M]
Chebyshev’s inequality implies that for each positive ¢ we have the bound

[{IVe (T (f = 5)(x) s m € [M])| > e} < 2M*e™'5 e lgmllLr-

Choosing § = €*/(2M? sup,,¢ s |gml 1), We see that there exists a simple func-
tion s such that [{|V,.(Ty(f — s)(x) : m € [M])| > €}| < e. Using the sublinearity
of the variation operators, we finally obtain

{IVe (T f(z) : m € [M])] > A+ e} < [{[Vo(Tin(f — s)(x) : m € [M])] > €}|
+ {IVe(Trs(x) : m € [M])] > A}
< e+ {|Vi(Tms(x) : m € [M])]| > A}

Using the bound previously established for simple functions and taking € to 0
completes the proof.

The proof for jump inequalities is similar but replaces the use of sublinearity for
variation operators with almost sub-additivity of jump functions (|1.4]). Breaking
up A into A; + A2 and taking one of the parameters to 0 allows us to obtain the
same constants. O

Our strategy for the proof of Theorem is to take h,, to be P<j iy, for some
large k as an approximation to u,, and bound the rest as error. We assumed
that pu,, is a finite measure of bounded total variation so that Pj,,, which is the
convolution of i, with a Schwartz function, is well defined, and ||[P<gpimllp Sk
lltem|lTv, where ||fpom ||y denotes the total variation of pi,,. We remark that the
implicit bound is not uniform in k; this presents a minor technicality.
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Proof of Theorem [I.3] Once again, weak-type immediately implies restricted weak-
type; so, we only prove the converse. Fix the exponents ¢, > 1. Assume that
q < oo; the modifications for ¢ = oo are left to the reader. Reduce to the truncated
variation operator V,.(f*um, : m € [M]) for large M € N as before. For the moment
choose f to be a simple function normalized so that || f|lcc = 1. Let A > 0.

Let €,0 € (0,1). Choose k sufficiently large so that assumption implies
that

1f * Pogpimll e < €]l £l e
uniformly in m € [M]. The bound (2.1)) yields

IV f * Poppirn = m € [M])||1o < 2M7 sup 1f * Porimllze < 2M€] f] Lo.

Chebyshev’s inequality implies that
{Ve(f % Pokpim 2 m € [M]) > 6} < 07 P[[Vo(f  Poppim 2 m € [M])|[7,
< 6P @Me f]| 1)
Apply Proposition 2.1) with g,,, := P<gpm to find a subset I. satisfying the

conclusions of Proposition @ Replacing f by 1; in the above analysis shows
that

{Vi (11, % Pogpign 2 m € [M]) > 6} < 6 P(2M?€||1p,||1»)".
From our assumption on I in the conclusion of Proposition 2.1 with A, := P<ytim,
(2.1) also implies that

IVe(lf = 11,] % Pegpim : m € [M])||p~ < 2M7e Su[p]||[f* 17 * P<ppiml o=
me[M

< 2M%¢| f| 1.
The decomposition
fopm = f% Poppim + [f — 11.] % P<pim + 11 % fr, — 11, % Pspfim
implies
{Ve(f s 2 m€ [M]) > X430} < [{Ve(f % Pogpm : m € [M]) > 6}
+ {Va(lf = 1r]* Peppim = m € [M]) > 6}
+ {Vr(Ls, * Psppim = m € [M]) > 6}
+ HVe(Lr # pn = m € [M]) > A}
Let X = max{1,||f|lz», || 1r.]|z#, || fllz:} and choose € = §2/(8 M2X) to obtain
HVi(f * pom 2 m € [M]) > X+ 30} <267 + {Vi (11, * oy, : m € [M]) > A}

Applying the restricted weak-type hypothesis and letting ¢ tend to 0 completes the
proof for simple functions.

To extend from simple functions to all f in L!, adapt the approximation ar-
gument at the end of the proof of Theorem [I.I] Finally, the adaptation to jump
functions follows the same argument as before. O
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POINTILLIST PRINCIPLE FOR VARIATIONS 585

3. CARRILLO-DE GUZMAN’S THEOREM FOR VARIATIONS

The proof of Theorem will be similar to that of Carrillo-de Guzmén’s the-
orem and Theorem using the following proposition as the Carrillo-de Guzman
analogue of Proposition [2.1

Proposition 3.1. Let (gm)me be a finite sequence of uniformly continuous
functions, and let f = Ele arlp, be a simple function on RY with Fy, dyadic
cubes from the standard dyadic mesh on R%. If € > 0, then f can be refined into a
sum of dyadic cubes f =) bjlg, where Q; is in some Fy, and for any points y;
in the interior of Q;, we have

£ 5 gon(@) = > 31Qslgm (@ = )| < 1.1 e (3.1)
J

for each 1 <m < M and all x € R4,

Proof of Proposition [3.1] Since each of the g,, are uniformly continuous and there
are finitely many of them, they are altogether uniformly continuous. This means
that for any e > 0, which we pick and fix now, if |z—y| < 0, then |gm () —gm(y)| < €
simultaneously for all m. With this in mind, use the dyadic structure in R¢ to
decompose each dyadic cube Fj, into a finite union U,Qy ¢ of dyadic cubes whose
interiors are disjoint and each of which has diameter at most §. Partitioning and
reordering the cubes and coefficients as necessary, we rewrite f = ) j bjlg,. Let

y; be a point in the interior of @);. For each cube Q; and = € R?, we have
11q, * gm (@) — |Qjlgm(z — yr)| < |Qjle

by the uniform continuity of (gm)me[nr. This implies, for each 2 € R,
£ 5 gml) = S b31Qslgm (= )| < S 1511Qsle = 1,1 e
J J

This completes the proof. O

Proof of Theorem [I.2] Fix r,p > 1. Assume that the variation operator V;.(T,, :
m € N) is pointed weak-type (p, p) with norm at most C. Our task is to show that
Vi (T, : m € N) is weak-type (p,p) with norm at most C.

We commence with several standard reductions which we outline. The first step
is to reduce to the truncated variation operators V,.(T,, : m € [M]) for arbitrarily
large but finite M. Since V,.(T,, : m € N) is pointed weak-type (p,p) with norm
at most C, so is V;.(T,, : m € [M]). It suffices to show that V,.(T,, : m € [M]) is
weak-type (p,p) with norm at most C. The second step is to boost to the
same inequality with arbitrary positive coefficients aj, > 0:

‘{x : VT(Zakgm(ar—xk) ‘m € [M]) > /\}‘ < C(Zai)/\_p. (3.2)

This step follows a standard technique: First prove (3.2)) for a; € Z. Then extend
to rational coefficients. Finish by taking limits to conclude it for real coefficients.
The third step is to reduce to smooth g,, € L' using sublinearity of the variation
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operators as in the proof of Theorem [I.I} At this point, we may now assume that
for all € > 0, there exists a § > 0 depending on € such that |gm, (%) — gm,(y)| < €
for all 1 < my,ms < M and all |z — y| < 4.

Suppose that f := Zle arlg, is a simple function where the @) are dyadic
cubes. Applying Proposition we may assume that all the dyadic cubes @y have
the same sidelength 6 < 1 and that holds true. For each 1 < k < K, let x; be
a fixed point in the interior of @y e.g., the center of the cube. Define the functions

K K
x) = Zak‘QMgm(I —xp) = Zak|Qk|Tm59¢k (z)

k=1 k=1
for m € [M]. Then

[ gm(z) —

K
/Zalek Y)gm(x —y Zak‘QHgm(x_xk)

k=1 =

K
Z a / 10, (1)gm(z —y) — 1o, (¥)gm(z —a1) dy
=1

Taking absolute values and applying the triangle inequality, we obtain

K
* g () — hyp ()] < a m(T — 1Y) — gm(x — x1)| d
1F * () <>|<k§_jl|k|/Qk|g< ¥) — gz — 1)| dy

K
< akl|Qile = [ fl1e.
k=1

Choosing € = €'/(8M?||f||1) and applying the inequality (2.1]) yields
[{Ve(f # gm(z) :m € [M]) > A+ €'} | < {Vi(hun(2) : m € [M]) > A}

Since hy,(z) = Ele ak|Qk| Tz, (z), applying the boosted pointed weak-type
hypothesis (3.2)) implies that
K

(Vi@ m € [0]) > 2] < (3 Jaull@el?) 2.

k=1
Upon letting € tend to 0, it suffices to show that
K

/
(S lai@el?) ™ < £

k=1
This follows because § < 1 and p > 1, which implies § > ¢P and

K 1/p K 1/p K 1/p
1l = (D lawta®) ™ = (D lana) ™ = (3 laxl|Qul?)
k=1 k=1 k=1

The final step is to extend from simple functions formed by the standard dyadic
mesh on R? to general functions in LP(R?) by adapting the argument at the end
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of the proof of Theorem [I.I] The modifications for jump inequalities are like those
for Theorems [[.1] and [[L3] We leave the details to the reader. O
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