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THE POINTILLIST PRINCIPLE FOR VARIATION OPERATORS
AND JUMP FUNCTIONS

KEVIN HUGHES

Abstract. I extend the pointillist principles of Moon and Carrillo–de Guzmán
to variational operators and jump functions.

1. The pointillist principle

In [11], Moon observed that, for a sequence of sufficiently smooth convolution
operators and any q ≥ 1, the weak (1, q) boundedness of their maximal operator
is equivalent to restricted weak (1, q) boundedness of the maximal operator. In
this paper, the goal is to extend this theorem to variational operators and to jump
functions. I now recall a couple definitions in order to make this precise.

For a sequence of operators (Tm)m∈N, define their maximal function

M(Tmf(x) : m ∈ N) := sup
m∈N

|Tmf(x)|

for f : Rd → C and x ∈ Rd. Suppose that p, q ≥ 1. An operator T is weak-type
(p, q) with norm C if it satisfies the inequality

∥Tf∥Lq,∞ ≤ C∥f∥Lp for all f ∈ Lp, (1.1)

where ∥f∥Lp :=
( ∫

|f(x)|pdx
)1/p and ∥g∥Lq,∞ := supt>0 t|{x ∈ Rd : |g(x)| ≥ t}|1/q

for functions f, g : Rd → C, with the usual modifications made when p or q is
infinite. Here and throughout, C is non-negative. In this paper, we will restrict our
functions to be defined on Rd and will work with the Lebesgue measure thereon. So,
I will rarely include this in the notation, and I will also let |X| denote the measure
of a finite (Lebesgue) measurable set X in Rd. Additionally, an operator T is said
to be restricted weak-type (p, q) with norm C if (1.1) holds for each function f
which is the characteristic function of a finite measurable set.

Moon’s theorem. Suppose that (Tm)m∈N is a sequence of convolution operators
given by Tmf := f ∗ gm with gm ∈ L1(Rd) for each m ∈ N. For any q ≥ 1,
M(Tmf(x) : m ∈ N) is restricted weak-type (1, q) with norm C if and only if
M(Tmf(x) : m ∈ N) is weak-type (1, q) with norm C.
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578 KEVIN HUGHES

The essential difference between the two distinct weak-types lies in the class of
input functions used to define them. The class of all Lp functions serve as input to
the (unqualified) weak-type inequalities while its subclass of characteristic functions
of finite measurable sets serve as input to the restricted weak-type inequalities.
In particular, if an operator is weak-type (p, q) then it is automatically restricted
weak-type (p, q). Moon’s theorem says that the converse is true for certain maximal
functions when p = 1. The converse may fail for linear operators when p > 1; see
[11, page 149].

In [4], Carillo–de Guzmán gave a version of Moon’s theorem where the class of
characteristic functions is replaced by linear combinations of delta functions. To
state their result, we introduce more terminology. Let δx denote the (Dirac) delta
function at the point x ∈ Rd. In analogy with restricted weak-type, let us say
that an operator T is pointed weak-type (p, p) with norm at most C if for any finite
subset of points X ⊂ Rd, we have the inequality∣∣∣{x ∈ Rd :

∣∣T ( ∑
y∈X δy

)
(x)

∣∣ > λ
}∣∣∣ ≤ C#X/λp for all λ > 0. (1.2)

This inequality and definition is to be interpreted as defined only when the oper-
ator T makes sense on delta functions. For instance, this makes sense when T is
taken to be the maximal function M(f ∗ gm(x) : m ∈ N) formed from a sequence
of L1 functions (gm)m∈N, in which case

∑
y∈X δy ∗ gm(x) =

∑
y∈X g(x − y).

Carrillo–de Guzmán’s theorem. Suppose that (Tm)m∈N is a sequence of con-
volution operators given by Tmf := f ∗ gm with gm ∈ L1(Rd) for each m ∈ N.
For any p ≥ 1, M(Tmf(x) : m ∈ N) is weak-type (p, p) with norm at most C if
M(Tmf(x) : m ∈ N) is pointed weak-type (p, p) with norm at most C. Furthermore,
the converse is true if p = 1.

Pointed weak-type inequalities form a third distinct class of inequalities because
finite sums of delta functions serve as input to the pointed weak-type inequalities;
note that delta functions are not Lp functions for any p and give a distinct class of
input functions. The converse to Carrillo–de Guzmán’s theorem can fail for p > 1;
see [4, page 121].

Grafakos–Mastylo extended Moon’s theorem to the multilinear setting in [5]
while Carena extended Carrillo–de Guzmán’s theorem to more general metric mea-
sure spaces in [2]. See [7] and [9] for more extensions. It is this collection of theo-
rems we refer to as the ‘pointillist principle’, taking its name from the Pointillism
movement in art.

The purpose of this short note is to extend Moon and Carrillo–de Guzmán’s
instances of the pointillist principle to variational operators and jump functions.
The pointillist principle led to a new proof of boundedness of the Hardy–Littlewood
maximal function in [3] and the best constant for the Hardy–Littlewood maximal
function in one dimension in [8], and it is my hope that this work will be used
to give new proofs of the Lp boundedness of the variation of Hardy–Littlewood
averages. I now recall these operators and discuss a few of their basic properties.
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Let r ∈ [1, ∞) and R ⊆ N. Suppose that (fm)m∈N is a sequence of Lebesgue mea-
surable functions. Define pointwise the r-variation of the subsequence (fm)m∈R:

Vr(fm(x) : m ∈ R) := sup
( L∑

i=1
|fmi

(x) − fmi+1(x)|r
)1/r

, (1.3)

where the supremum is over all finite, increasing subsequences (mi) in R. One
makes the usual modification using the essential supremum to extend (1.3) to
r = ∞. Note that Vr(·) is sublinear in its argument. For λ > 0, define the jump
function Nλ(fm(x) : m ∈ R) as given by the supremum over M ∈ N such that there
exists a sequence s0 < t0 ≤ s1 < t1 ≤ · · · ≤ sM < tM in R with |fsi

(x)−fti
(x)| > λ

for all 0 ≤ i ≤ M . Unlike the variation operators, the jump functions fail to be
sublinear. However, we note the almost sub-additivity of the jump functions:

Nλ([fm + gm](x) : m ∈ R) ≤ Nλ1(fm(x) : m ∈ R) + Nλ2(gm(x) : m ∈ R) (1.4)

for λ1 and λ2 positive with λ1 + λ2 = λ.
For present purposes, we are most interested in these objects when the functions

fm := Tmf for a sequence of operators (Tm)m∈N e.g., naturally occurring families
of linear operators in probability and analysis such as expectation operators from a
martingale or Hardy–Littlewood averages. The main problem becomes establishing
the Lp boundedness of the associated variation operators and jump functions.

The variation operators are connected to the jump functions by the inequality

Nλ(Tmf(x) : m ∈ R) ≤ 4λ−r[Vr(Tmf(x) : m ∈ R)]r

for each r ≥ 1. Surprisingly this can be reversed on average in Lp(Rd) for 1 ≤ p <
∞ when r > 2. In practice the Lp boundedness of V2 often fails. However, the
jump function λ

√
Nλ may still be bounded, in which case it acts as a surrogate

‘endpoint’ operator for V2; see [6]. The variation operators are related to the
maximal functions by

V∞(Tmf(x) : m ∈ R) = 2M(Tmf(x) : m ∈ R)
≤ 2 [V∞(Tmf(x) : m ∈ R) + Tm0f(x)]

for any m0 ∈ R. Because of this inequality, we may henceforth assume that r is
finite. On the one hand, Vrf(x) increases as r decreases so that its Lp-boundedness
becomes more difficult to prove. On the other hand, the jump inequalities and
variational estimates give quantitative versions of pointwise ergodic theorems. For
a more thorough discussion of variations and jump functions, see [1, 12, 6, 10].

Our first theorem generalizes Moon’s theorem to variations and jump functions.

Theorem 1.1. Suppose that (Tm)m∈N is a sequence of convolution operators given
by Tmf := f ∗ gm with gm ∈ L1(Rd) for each m ∈ N. For any q, r ≥ 1, Vr(Tmf :
m ∈ N) is restricted weak-type (1, q) with norm C if and only if Vr(Tmf : m ∈ N)
is weak-type (1, q) with norm C. Moreover, λ r

√
Nλis restricted weak-type (1, q) if

and only if λ r
√

Nλis weak-type (1, q).
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We also prove the Carrillo–de Guzmán version of Theorem 1.1.

Theorem 1.2. Suppose that (Tm)m∈N is a sequence of convolution operators given
by Tmf := f ∗ gm with gm ∈ L1(Rd) for each m ∈ N. If p, r ≥ 1 and Vr(Tmf : m ∈
N) is pointed weak-type (p, p) with norm C, then Vr(Tmf : m ∈ N) is strong-type
(p, p) with norm at most C. Moreover the same is true for the jump functions
λ r

√
Nλ.

We can extend Theorem 1.1 to a slightly more general set-up. In addition
to working with convolutions of L1 functions, we will work with convolutions of
smoothing, possibly singular, measures. This extension appeared for the maximal
function of lacunary dilates of a smoothing measure in unpublished work of Seeger–
Tao–Wright connected with [13]. Inspired by the set-up of [14], we use a weak
version of condition (2) of Seeger–Wright’s Theorem 1.1 in [14]. Let (µm)m∈N be
a sequence of finite measures of bounded variation and let Tm denote convolution
with µm. Assume that, for some fixed p ≥ 1 and for each M ∈ N, we have

sup
m≤M

∥Tm ◦ P>k∥Lp→Lp = o(1) as k → ∞. (1.5)

Here, and throughout, Pk denotes a smooth Littlewood–Paley ‘projection’ operator
adapted to frequency band of frequency size 2k. To be precise, let 1[−1,1] ≤ ϕ ≤
1[−2,2] be a smooth function on R. Define by the multiplier P̂k(ξ) = ϕ(|ξ|)−ϕ(2|ξ|).
Then for a function f : Rd → C, P̂kf := P̂k · f̂ the Fourier transform of Pkf has
support in {|ξ| ∈ [2k−1, 2k+1]} while

∑
k∈Z ϕ(|ξ|) − ϕ(2|ξ|) ≡ 1 for ξ ∈ Rd so

that
∑

k∈Z Pkf = f in many senses. We write P≤kf =
∑

j≤k Pjf and P>kf =∑
j>k Pjf . As a motivating example one may consider the lacunary spherical

averages given by the measures µm := σ2m for m ∈ N, where σr is the spherical
measure on a sphere of radius r > 0 normalized to have mass 1. It is known that
∥Pkµr∥L2(Rd) ≲ (1+r2−k) 1−d

2 for d ≥ 2 so that (1.5) is satisfied for these examples.
We have the following ‘smoothing’ version of Moon’s theorem and Theorem 1.1.

Theorem 1.3. Suppose that (Tm)m∈N is a sequence of convolution operators given
by Tmf := f ∗µm, where µm is a finite measure of bounded total variation satisfying
the smoothing property (1.5) for each m ∈ N. For any q, r ≥ 1, Vr(Tmf : m ∈ N) is
restricted weak-type (1, q) with norm C if and only if Vr(Tmf : m ∈ N) is weak-type
(1, q) with norm at most C. Moreover, λ r

√
Nλis restricted weak-type (1, q) if and

only if λ r
√

Nλis weak-type (1, q).

We close the introduction with a little bit of notation that will be useful in the
proof of our theorems. First, f(x) ≲ g(x) if there exists a constant f(x) ≤ Cg(x)
for some implicit constant C > 0. Second, for a subset F ⊂ Rd, let 1F denote the
indicator or characteristic function of F .

2. Moon’s theorem for variations

The proof of Moon’s theorem hinges on how to approximate simple functions.
The following proposition is implicit in [11]. It says that the set Iϵ approximates f
very well, in the sense that it has the same size as f and it is close to the convolution
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of f with a prescribed finite sequence of smooth functions. Since we will use it in
the proof of Theorem 1.1, we include its proof for completeness.

Proposition 2.1 (Moon’s pointillist principle). For a finite sequence (hm)m∈[M ]
of C1(Rd) functions, if f is a simple function on Rd, then for any ϵ > 0, there
exists a set Iϵ ⊆ supp(f) such that

(1) ∥f∥L∞ |Iϵ| = ∥f∥L1 ,
(2) |f ∗ hm(x) − (∥f∥L∞ 1Iϵ) ∗ hm(x)| < ϵ ∥f∥L1 for m ∈ [M ] and all x ∈ Rd.

Proof of Proposition 2.1. By the scaling homogeneity of the problem we may nor-
malize ∥f∥L∞ = 1. Let f =

∑K
k=1 ak1Fk

be a simple function with coefficients
ak ∈ R and each set Fk ⊂ Rd of finite Lebesgue measure. We may assume that
the Fk are open balls with diameter at most δ > 0 a small parameter that we will
optimize later. Let Ik be any open ball in Fk such that |Ik| = ak |Fk|. Now set
I = ∪kIk so that ∥f∥L∞ |I| = |I|.

We want to show that the difference between f and 1I = ∥f∥L∞ 1I is small.
First note that

f ∗ hm(x) =
∫
Rd

∑
k

ak1Fk
(y)hm(x − y) dy

=
∑

k

ak

∫
Fk

hm(x − y) dy

=
∑

k

ak |Fk| hm(x − yk)

=
∑

k

∥f∥L∞ |Ik| hm(x − yk)

=
∑

k

|Ik| hm(x − yk)

for some yk ∈ Fk since the hm are smooth by the mean value theorem. Similarly,
since Ik ⊂ Fk, we can write

1I ∗ hm(x) =
∫
Rd

∑
k

1Ik
(y)hm(x − y) dy

=
∑

k

∫
Ik

hm(x − y) dy

=
∑

k

|Ik| hm(x − y′
k)

for some y′
k ∈ Ik. Therefore we have the pointwise estimate

|f ∗ hm(x) − 1I ∗ hm(x)| =
∣∣∣∣ ∑

k

|Ik| hm(x − yk) −
∑

k

|Ik| hm(x − y′
k) dy

∣∣∣∣
≤

∑
k

|Ik| · |hm(x − yk) − hm(x − y′
k)| .
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Since the functions hm are smooth and M is finite, we can choose δ small enough
so that |hm(x − yk) − hm(x − y′

k)| < ϵ for each 1 ≤ m ≤ M . Take Iϵ to be I to
conclude the proof. □

We will make use of the following inequality multiple times.

Lemma 2.2. If 1 ≤ p, r ≤ ∞ and (fm)m∈[M ] is a finite sequence of Lp-functions,
then

∥Vr(fm : m ∈ [M ])∥Lp ≤ 2M2 sup
m∈[M ]

∥fm∥Lp . (2.1)

Proof. Fix 1 ≤ p, r ≤ ∞. First note the pointwise inequality
Vr(fm(x) : m ∈ [M ]) ≤ 2M sup

m∈[M ]
|fm(x)|.

This inequality follows from using the fact that Vr increases as r decreases and then
applying the triangle inequality to V1. Next take Lp norms, replace the supremum
by a sum, and use the triangle inequality to find that

∥Vr(fm : m ∈ [M ])∥Lp ≤ 2M
∥∥∥ sup

m∈[M ]
|fm|

∥∥∥
Lp

≤ 2M2 sup
m∈[M ]

∥fm∥Lp .

This is the desired inequality. □

With (2.1) and Proposition 2.1 in hand, let us prove Theorem 1.1.

Proof of Theorem 1.1. Weak-type obviously implies restricted weak-type so we only
prove that restricted weak-type implies weak-type. Fix q, r ≥ 1. By monotone con-
vergence, reduce to the truncated variation operator Vr(f ∗gm(x) : m ∈ [M ]) where
the supremum is over all finite, increasing subsequences of [M ] := {1, . . . , M} as
long as our bounds at the end are independent of M . Normally one would also
reduce to simple functions; however, we cannot do this since we do not yet know
that the variation operator is continuous. Assume for now that f is a simple func-
tion, and we will remove this restriction at the end of the argument. By dilational
symmetry of L1(Rd), normalize our simple function so that ∥f∥L∞ = 1. Let λ > 0.

Let ϵ > 0. Our first step is to approximate gm ∈ L1(Rd) by smooth hm ∈ L1(Rd).
We can do this so that ∥gm − hm∥L1 < ϵ for each m ∈ [M ]. Then, for each x ∈ Rd,

|f ∗ (gm − hm)(x)| ≤ ∥f∥L∞ ∥gm − hm∥L1 < ϵ.

Applying this and the inequality (2.1) with fm := f ∗ [gm − hm] and p = ∞ implies
that

∥Vr(f ∗ [gm − hm] : m ∈ [M ])∥L∞ < 2M2ϵ.

Apply Proposition 2.1 to find a subset Iϵ ⊂ supp(f) such that |Iϵ| = ∥f∥L1

and satisfying the inequality |f ∗ hm(x) − 1Iϵ ∗ hm(x)| < ϵ simultaneously for each
m ∈ [M ] and every x ∈ Rd. This latter condition implies that for any m1, m2 ∈ [M ]
and x ∈ Rd,

|(f − 1Iϵ
) ∗ hm1(x) − (f − 1Iϵ

) ∗ hm2(x)| < 2ϵ.

Applying this and (2.1) with fm := [f − 1Iϵ
] ∗ hm and p = ∞ implies that

∥Vr([f − 1Iϵ
] ∗ hm : m ∈ [M ])∥L∞ < 4M2ϵ.
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Let δ ∈ (0, 1) and choose ϵ = δ/(8M2). The above inequalities imply that

|{Vr(f ∗ gm(x) : m ∈ [M ]) > λ + 2δ}| ≤ |{Vr(f ∗ [gm − hm](x) : m ∈ [M ]) > δ}|
+ |{Vr([f − 1Iϵ ] ∗ hm(x) : m ∈ [M ]) > δ}|
+ |{Vr(1Iϵ ∗ hm(x) : m ∈ [M ]) > λ}|

= |{Vr(1Iϵ
∗ hm(x) : m ∈ [M ]) > λ}| .

Applying our hypothesis that the variation is restricted weak-type (1, q), we find

|{Vr(f ∗ gm(x) : m ∈ [M ]) > λ + 2δ}| ≤ Cλ−q |Iϵ| = Cλ−q ∥f∥L1 .

Taking δ to 0, we obtain the desired bound for simple functions.
We extend our estimates to f in L1(Rd). Find a simple function s :=

∑K
k=1 ak1Fk

where the subsets Fk ⊂ Rd have finite Lebesgue measure and ∥f − s∥L1(Rd) < δ
where δ ∈ (0, 1) is a parameter which we will optimize in a moment. The bound
(2.1) implies

∥Vr(Tm(f − s) : m ∈ [M ])∥L1 ≤ 2M2 sup
m∈[M ]

∥Tm(f − s)∥L1 .

Young’s inequality implies that ∥Tm(f − s)∥L1 < δ∥gm∥L1 for all m. Therefore,

∥Vr(Tm(f − s) : m ∈ [M ])∥L1 < 2M2δ sup
m∈[M ]

∥gm∥L1 .

Chebyshev’s inequality implies that for each positive ϵ we have the bound∣∣{|Vr(Tm(f − s)(x) : m ∈ [M ])| > ϵ
}∣∣ < 2M2ϵ−1δ sup

m∈[M ]
∥gm∥L1 .

Choosing δ = ϵ2/(2M2 supm∈[M ] ∥gm∥L1), we see that there exists a simple func-
tion s such that |{|Vr(Tm(f − s)(x) : m ∈ [M ])| > ϵ}| < ϵ. Using the sublinearity
of the variation operators, we finally obtain

|{|Vr(Tmf(x) : m ∈ [M ])| > λ + ϵ}| ≤ |{|Vr(Tm(f − s)(x) : m ∈ [M ])| > ϵ}|
+ |{|Vr(Tms(x) : m ∈ [M ])| > λ}|

< ϵ + |{|Vr(Tms(x) : m ∈ [M ])| > λ}|.

Using the bound previously established for simple functions and taking ϵ to 0
completes the proof.

The proof for jump inequalities is similar but replaces the use of sublinearity for
variation operators with almost sub-additivity of jump functions (1.4). Breaking
up λ into λ1 + λ2 and taking one of the parameters to 0 allows us to obtain the
same constants. □

Our strategy for the proof of Theorem 1.3 is to take hm to be P≤kµm for some
large k as an approximation to µm and bound the rest as error. We assumed
that µm is a finite measure of bounded total variation so that Pkµm, which is the
convolution of µm with a Schwartz function, is well defined, and ∥P≤kµm∥p ≲k

∥µm∥T V , where ∥µm∥T V denotes the total variation of µm. We remark that the
implicit bound is not uniform in k; this presents a minor technicality.
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Proof of Theorem 1.3. Once again, weak-type immediately implies restricted weak-
type; so, we only prove the converse. Fix the exponents q, r ≥ 1. Assume that
q < ∞; the modifications for q = ∞ are left to the reader. Reduce to the truncated
variation operator Vr(f ∗µm : m ∈ [M ]) for large M ∈ N as before. For the moment
choose f to be a simple function normalized so that ∥f∥∞ = 1. Let λ > 0.

Let ϵ, δ ∈ (0, 1). Choose k sufficiently large so that assumption (1.5) implies
that

∥f ∗ P>kµm∥Lp < ϵ∥f∥Lp

uniformly in m ∈ [M ]. The bound (2.1) yields

∥Vr(f ∗ P>kµm : m ∈ [M ])∥Lp ≤ 2M2 sup
m≤M

∥f ∗ P>kµm∥Lp < 2M2ϵ∥f∥Lp .

Chebyshev’s inequality implies that

|{Vr(f ∗ P>kµm : m ∈ [M ]) > δ}| ≤ δ−p∥Vr(f ∗ P>kµm : m ∈ [M ])∥p
Lp

< δ−p(2M2ϵ∥f∥Lp)p.

Apply Proposition 2.1 with gm := P≤kµm to find a subset Iϵ satisfying the
conclusions of Proposition 2.1. Replacing f by 1Iϵ

in the above analysis shows
that

|{Vr(1Iϵ
∗ P>kµm : m ∈ [M ]) > δ}| < δ−p(2M2ϵ∥1Iϵ

∥Lp)p.

From our assumption on Iϵ in the conclusion of Proposition 2.1 with hm := P≤kµm,
(2.1) also implies that

∥Vr([f − 1Iϵ ] ∗ P≤kµm : m ∈ [M ])∥L∞ ≤ 2M2ϵ sup
m∈[M ]

∥[f − 1Iϵ ] ∗ P≤kµm∥L∞

< 2M2ϵ∥f∥L1 .

The decomposition

f ∗ µm = f ∗ P>kµm + [f − 1Iϵ
] ∗ P≤kµm + 1Iϵ

∗ µm − 1Iϵ
∗ P>kµm

implies

|{Vr(f ∗ µm : m ∈ [M ]) > λ + 3δ}| ≤ |{Vr(f ∗ P>kµm : m ∈ [M ]) > δ}|
+ |{Vr([f − 1Iϵ ] ∗ P≤kµm : m ∈ [M ]) > δ}|
+ |{Vr(1Iϵ

∗ P>kµm : m ∈ [M ]) > δ}|
+ |{Vr(1Iϵ

∗ µm : m ∈ [M ]) > λ}|.

Let X = max{1, ∥f∥Lp , ∥1Iϵ
∥Lp , ∥f∥L1} and choose ϵ = δ2/(8M2X) to obtain

|{Vr(f ∗ µm : m ∈ [M ]) > λ + 3δ}| ≤ 2δp + |{Vr(1Iϵ
∗ µm : m ∈ [M ]) > λ}|.

Applying the restricted weak-type hypothesis and letting δ tend to 0 completes the
proof for simple functions.

To extend from simple functions to all f in L1, adapt the approximation ar-
gument at the end of the proof of Theorem 1.1. Finally, the adaptation to jump
functions follows the same argument as before. □
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3. Carrillo–de Guzmán’s theorem for variations

The proof of Theorem 1.2 will be similar to that of Carrillo–de Guzmán’s the-
orem and Theorem 1.1 using the following proposition as the Carrillo–de Guzmán
analogue of Proposition 2.1.

Proposition 3.1. Let (gm)m∈[M ] be a finite sequence of uniformly continuous
functions, and let f =

∑K
k=1 ak1Fk

be a simple function on Rd with Fk dyadic
cubes from the standard dyadic mesh on Rd. If ϵ > 0, then f can be refined into a
sum of dyadic cubes f =

∑
bj1Qj

where Qj is in some Fk, and for any points yj

in the interior of Qj, we have∣∣∣f ∗ gm(x) −
∑

j

bj |Qj |gm(x − yj)
∣∣∣ < ∥f∥L1 ϵ (3.1)

for each 1 ≤ m ≤ M and all x ∈ Rd.

Proof of Proposition 3.1. Since each of the gm are uniformly continuous and there
are finitely many of them, they are altogether uniformly continuous. This means
that for any ϵ > 0, which we pick and fix now, if |x−y| < δ, then |gm(x)−gm(y)| < ϵ
simultaneously for all m. With this in mind, use the dyadic structure in Rd to
decompose each dyadic cube Fk into a finite union ∪ℓQk,ℓ of dyadic cubes whose
interiors are disjoint and each of which has diameter at most δ. Partitioning and
reordering the cubes and coefficients as necessary, we rewrite f =

∑
j bj1Qj

. Let
yj be a point in the interior of Qj . For each cube Qj and x ∈ Rd, we have

|1Qj
∗ gm(x) − |Qj |gm(x − yk)| < |Qj |ϵ

by the uniform continuity of (gm)m∈[M ]. This implies, for each x ∈ Rd,∣∣∣f ∗ gm(x) −
∑

j

bj |Qj |gm(x − yk)
∣∣∣ <

∑
j

|bj ||Qj |ϵ = ∥f∥L1 ϵ.

This completes the proof. □

Proof of Theorem 1.2. Fix r, p ≥ 1. Assume that the variation operator Vr(Tm :
m ∈ N) is pointed weak-type (p, p) with norm at most C. Our task is to show that
Vr(Tm : m ∈ N) is weak-type (p, p) with norm at most C.

We commence with several standard reductions which we outline. The first step
is to reduce to the truncated variation operators Vr(Tm : m ∈ [M ]) for arbitrarily
large but finite M . Since Vr(Tm : m ∈ N) is pointed weak-type (p, p) with norm
at most C, so is Vr(Tm : m ∈ [M ]). It suffices to show that Vr(Tm : m ∈ [M ]) is
weak-type (p, p) with norm at most C. The second step is to boost (1.2) to the
same inequality with arbitrary positive coefficients ak > 0:∣∣∣{x : Vr

( ∑
k

akgm(x − xk) : m ∈ [M ]
)

> λ
}∣∣∣ ≤ C

(∑
k

ap
k

)
λ−p. (3.2)

This step follows a standard technique: First prove (3.2) for ak ∈ Z. Then extend
to rational coefficients. Finish by taking limits to conclude it for real coefficients.
The third step is to reduce to smooth gm ∈ L1 using sublinearity of the variation
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operators as in the proof of Theorem 1.1. At this point, we may now assume that
for all ϵ > 0, there exists a δ > 0 depending on ϵ such that |gm1(x) − gm2(y)| < ϵ
for all 1 ≤ m1, m2 ≤ M and all |x − y| < δ.

Suppose that f :=
∑K

k=1 ak1Qk
is a simple function where the Qk are dyadic

cubes. Applying Proposition 3.1, we may assume that all the dyadic cubes Qk have
the same sidelength δ ≤ 1 and that (3.1) holds true. For each 1 ≤ k ≤ K, let xk be
a fixed point in the interior of Qk e.g., the center of the cube. Define the functions

hm(x) :=
K∑

k=1
ak|Qk|gm(x − xk) =

K∑
k=1

ak|Qk|Tmδxk
(x)

for m ∈ [M ]. Then

f ∗ gm(x) − hm(x) =
∫ K∑

k=1
ak1Qk

(y)gm(x − y) −
K∑

k=1
ak|Qk|gm(x − xk)

=
K∑

k=1
ak

∫
1Qk

(y)gm(x − y) − 1Qk
(y)gm(x − xk) dy

Taking absolute values and applying the triangle inequality, we obtain

|f ∗ gm(x) − hm(x)| ≤
K∑

k=1
|ak|

∫
Qk

|gm(x − y) − gm(x − xk)| dy

≤
K∑

k=1
|ak||Qk|ϵ = ∥f∥1ϵ.

Choosing ϵ = ϵ′/(8M2∥f∥1) and applying the inequality (2.1) yields

| {Vr(f ∗ gm(x) : m ∈ [M ]) > λ + ϵ′} | ≤ |{Vr(hm(x) : m ∈ [M ]) > λ}| .

Since hm(x) =
∑K

k=1 ak|Qk|Tmδxk
(x), applying the boosted pointed weak-type

hypothesis (3.2) implies that

|{Vr(hm(x) : m ∈ [M ]) > λ}| ≤ C
( K∑

k=1
|ak|p|Qk|p

)1/p

λ−p.

Upon letting ϵ′ tend to 0, it suffices to show that( K∑
k=1

|ak|p|Qk|p
)1/p

≤ ∥f∥p.

This follows because δ ≤ 1 and p ≥ 1, which implies δ ≥ δp and

∥f∥p =
( K∑

k=1
|ak|pδd

)1/p

≥
( K∑

k=1
|ak|pδpd

)1/p

=
( K∑

k=1
|ak|p|Qk|p

)1/p

.

The final step is to extend from simple functions formed by the standard dyadic
mesh on Rd to general functions in Lp(Rd) by adapting the argument at the end
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of the proof of Theorem 1.1. The modifications for jump inequalities are like those
for Theorems 1.1 and 1.3. We leave the details to the reader. □
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