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A HIGH-ACCURACY COMPACT FINITE DIFFERENCE
SCHEME FOR TIME-FRACTIONAL DIFFUSION EQUATIONS

XINDONG ZHANG, HANXIAO WANG, ZIYANG LUO, AND LEILEI WEI

Abstract. We propose a compact finite difference (CFD) scheme for the so-
lution of time-fractional diffusion equations (TFDE) with the Caputo–Fabrizio
derivative. The Caputo–Fabrizio derivative is discussed in the time direction
and is discretized by a special discrete scheme. The compact difference opera-
tor is introduced in the space direction. We prove the unconditional stability
and convergence of the proposed scheme. We show that the convergence order
is O(τ3 + h4), where τ and h are the temporal stepsize and spatial stepsize,
respectively. Our main purpose is to show that the Caputo–Fabrizio deriva-
tive without singular term can improve the accuracy of the discrete scheme.
Numerical examples demonstrate the efficiency of the proposed method, and
the numerical results agree well with the theoretical predictions.

1. Introduction

In recent decades, fractional calculus has become more widely used in different
engineering fields [7, 25, 4, 18], and the study of related fractional differential
equations (FDEs) has become a focus of many scholars. There are various forms
of fractional derivative; commonly used ones include Caputo, Riemann–Liouville
(R-L) and Grünwald–Letnikov (G-L). For more details refer to [17, 20, 26, 11, 30,
23, 28]. It is known that analytical solutions for fractional differential equations
are difficult to obtain; however, many scholars still seek such solutions [33, 19,
24]. Compared with analytical methods, numerical methods are more important
in practical applications, and results for fractional differential equations obtained
numerically can be found in [41, 38, 14, 9].

The diffusion equation is a partial differential equation used to describe changes
in the density of matter in diffusion phenomena. It is also commonly used to model
similar processes, such as the spread of alleles in population genetics. If we replace
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the integer-order derivative in the time direction with a fractional derivative of or-
der α (0 < α < 1), then a diffusion equation with a time-fractional derivative can
be obtained that can more accurately describe some anomalous diffusion phenom-
ena. TFDEs are derived by considering continuous-time random-walk problems,
which are in general non-Markovian processes. The physical interpretation of the
fractional derivative is that it represents a degree of memory in the diffusing ma-
terial [16, 27]. There are many results on the numerical solutions of TFDEs. For
example, in [15], Gorenflo et al. considered the numerical solution of TFDEs in
fractional Sobolev spaces. The authors of [29] introduced some initial-boundary-
value problems for TFDEs in open bounded one-dimensional domains. The authors
of [39] proposed a new compact alternating direction implicit method for solving
two-dimensional time-fractional diffusion equation with the Caputo–Fabrizio (C-F)
derivative.

The C-F derivative was first presented by Caputo and Fabrizio [6]. This operator
is important and interesting for describing the behavior of some complex physical
materials. Another interesting aspect for the C-F derivative is that it can provide
new perspectives for some areas of mechanical phenomena. This derivative is a
promising differentiation operator and it has been widely applied to several models
arising in many fields, such as biology, physics, control systems, materials science,
fluid dynamics, and real-world problems [3, 5]. Up to now, there are many results
about C-F derivative. In [2], a new discretization of the Caputo–Fabrizio derivative
was discussed. The authors of [12] introduced a numerical method for TFDEs
based on the C-F operator, in which a finite difference method and a spectral
method were used. For the latest results about the C-F derivative, one can refer
to [21, 32, 31, 35, 1, 36, 10], among others.

The CFD operator has good applications for solving FDEs. It has been studied
and applied by many scholars. In [8], the CFD method was used to obtain a fully
discrete implicit scheme for the fractional diffusion equation. In [42], the compact
difference scheme for distributed-order time-fractional diffusion-wave equation on
bounded domains was considered by Ye et al. The authors of [34] presented a
class of new compact difference schemes, which were used for solving the fourth-
order time-fractional sub-diffusion equation. In [40], Wang and Vong studied CFD
schemes for two types of fractional partial differential equations. In [13], a high-
order accurate scheme by using compact difference operator was proposed for time-
fractional advection-diffusion equations. Among the numerous numerical methods
for solving FDEs, CFD proves to be an effective method for constructing high-order
schemes.

Therefore, in this paper, we want to construct high-order numerical schemes for
solving TFDEs by CFD. The TFDE is as follows:


CF
0 Dα

t u(x, t) = a
∂2u

∂x2 + f(x, t), (x, t) ∈ (0, L) × (0, T ),

u(x, t)|t=0 = φ(x), x ∈ Ω = [0, L],

u(0, t) = u(L, t) = 0, t ∈ [0, T ],

(1.1)
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where a > 0 represents the diffusion coefficient, L is the length of the space, and
T is the termination time. f(x, t) and φ(x) are all given and sufficiently smooth
functions. We use CF

0 Dα
t to denote the C-F derivative [6], which is defined by

CF
0 Dα

t u(t) = 1
1 − α

∫ t

0
u′(s)e− α

1−α (t−s) ds = 1
1 − α

∫ t

0
u′(s)e−ϱ(t−s) ds,

where ϱ = α
1−α and 0 < α < 1.

The rest of the paper is organized as follows. In Section 2, some notations will
be given and a discrete scheme will be proposed for the diffusion equation (1.1).
The stability and error estimation of the proposed discrete scheme will be discussed
in Section 3. In Section 4, in order to confirm the efficiency and usefulness of the
proposed discrete scheme, some numerical experiments will be considered. Finally,
some conclusions will be given in Section 5.

2. Construction of the numerical scheme for TFDE

In the present section, the construction of a discrete scheme for (1.1) will be
considered. For the development of our discrete scheme, we provide some notations
that will be used in this section and others. For given positive integers M and N ,
let xj = jh, j = 0, 1, . . . , M , where h = L/M is the space stepsize, and let tn = nτ ,
n = 0, 1, . . . , N , where τ = T/N is the time stepsize. We use [N ] to denote the
set {1, 2, . . . , N}. We define un

j = u(xj , tn) and fn
j = f(xj , tn). We denote by

Vh = {V | V = (V0, V1, . . . , VM ), V0 = VM = 0} the grid function space. For any
functions V, W ∈ Vh, let

δxVj− 1
2

= Vj − Vj−1

h
, δxVj+ 1

2
= Vj+1 − Vj

h
,

δ2
xVj =

δxVj+ 1
2

− δxVj− 1
2

h
= Vj+1 − 2Vj + Vj−1

h2 .

Define the inner products and Sobolev norms (or seminorms)

(V, W ) = h

M−1∑
j=1

VjWj , ∥V ∥ =
√

(V, V ),

⟨δxVj , δxWj⟩ = h

M∑
j=1

δxVj− 1
2
δxWj− 1

2
, (δ2

xVj , δ2
xWj) = h

M−1∑
j=1

δ2
xVjδ2

xWj ,

(V, W )A = ⟨δxVj , δxWj⟩ − h2

12(δ2
xVj , δ2

xWj), ∥V ∥A =
√

(V, V )A.

We use H to represent a compact operator, which has the following form:

Hun
j =

{
1

12 un
j−1 + 10

12 un
j + 1

12 un
j+1 =

(
1 + h2

12 δ2
x

)
un

j , j ∈ [M − 1],
un

j , j = 0 or M.
(2.1)

For convenience, we allow C to represent different values at different positions.
Next, we introduce some lemmas that are helpful for understanding the construc-
tion of our discrete scheme.
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Lemma 2.1 ([13]). Let H be the compact operator defined in (2.1). Suppose u(x) ∈
C6(Ω), then one has

Huxx(xj , tn) = δ2
xun

j + O(h4),
where h is the space stepsize and j ∈ [M ].

Lemma 2.2 ([37]). Let ϱ = α
1−α with 0 < α < 1. Let u(t) be a sufficiently smooth

function for t > 0. Then

CF
0 Dα

t un = λ

n∑
k=1

e−ϱ(n−k)τ (uk−uk−1)+β

n∑
k=2

e−ϱ(n−k)τ (uk−2uk−1+uk−2)+O(τ3),

where λ = 1−e−ϱτ

ατ and β = 2(α−1)(1−e−ϱτ )+ατ(1+e−ϱτ )
2α2τ2 .

By Lemma 2.2, we have
CF
0 Dα

t un = − (λe−ϱτ − β)e−ϱ(n−2)τ u0 +
(
λe−2ϱτ − ((λ + 2β)e−ϱτ − β)

)
e−ϱ(n−3)τ u1

−
n−2∑
k=2

(1 − e−ϱτ )((λ + β)e−ϱτ − β)e−ϱ(n−k−2)τ uk

− ((λ + β)(1 − e−ϱτ ) + β)un−1 + (λ + β)un + O(τ3).

Let A1 = (λ + 2β)e−ϱτ − β, A2 = (1 − e−ϱτ )((λ + β)e−ϱτ − β), and A3 = (λ +
β)(1 − e−ϱτ ) + β. By the definition of the compact operator H and Lemmas 2.1
and 2.2, one has

(λ + β)Hun
j − aδ2

xun
j = (λe−ϱτ − β)e−ϱ(n−2)τ Hu0

j − (λe−2ϱτ − A1)e−ϱ(n−3)τ Hu1
j

+ A2

n−2∑
k=2

e−ϱ(n−k−2)τ Huk
j + A3Hun−1

j + Hfn
j + Rn

j ,

j ∈ [M − 1], n ∈ [N − 1],
u0

j = φ(xj), 0 ≤ j ≤ M,

un
0 = un

M = 0, n ∈ [N ],
(2.2)

where ∥Rn
j ∥ ≤ C(τ3 + h4).

We use Un
j to represent the numerical approximation of u(x, t) at the mesh point

(xj , tn). If we ignore the truncation error term Rn
j in (2.2), then we get the CFD

scheme for (1.1) as follows:

(λ + β)HUn
j − aδ2

xUn
j = (λe−ϱτ − β)e−ϱ(n−2)τ HU0

j

− (λe−2ϱτ − A1)e−ϱ(n−3)τ HU1
j

+ A2

n−2∑
k=2

e−ϱ(n−k−2)τ HUk
j + A3HUn−1

j + Hfn
j ,

j ∈ [M − 1], n ∈ [N − 1],
U0

j = φ(xj), 0 ≤ j ≤ M,

Un
0 = Un

M = 0, n ∈ [N ].

(2.3)
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3. Stability analysis and error estimates

The main purpose of this section is to provide and prove the stability and error
estimation for the discrete scheme (2.3). Next, we introduce some lemmas that
are helpful for understanding the proof of our main results. We will ignore the
subscript j in the following discussion.

Lemma 3.1 ([44, 22]). If V, W ∈ Vh, then (δ2
xV, W ) = −⟨δxV, δxW ⟩.

Lemma 3.2. For any grid function V, W ∈ Vh,

−(δ2
xV, HW ) = (V, W )A.

Proof. Applying the definition of the operator H, we get

−(δ2
xV, HW ) = −(δ2

xV, (1 + h2

12δ2
x)W ) = −(δ2

xV, W ) − h2

12(δ2
xV, δ2

xW ).

By Lemma 3.1, (δ2
xV, W ) = −⟨δxV, δxW ⟩. It follows that

−(δ2
xV, HW ) = ⟨δxV, δxW ⟩ − h2

12(δ2
xV, δ2

xW ) = (V, W )A.

Then the proof is complete. □

Lemma 3.3 ([43]). For any grid function U ∈ Vh, 1
3 ∥U∥2 ≤ ∥HU∥2 ≤ ∥U∥2.

The proof of the following lemma is simple, and we will omit its process here.

Lemma 3.4. Let ϱ = α
1−α with 0 < α < 1. Then

n−1∑
k=1

e−ϱ(n−1−k)τ (1 − e−ϱτ ) < 1.

Lemma 3.5 ([37]). Let ϱ = α
1−α with 0 < α < 1, and let

T n
k =

(
2(α − 1)(1 − e−ϱτ ) + ατ(1 + e−ϱτ )

)
e−ϱ(n−k)τ , 2 ≤ k ≤ n.

Then
T n

n > T n
n−1 > · · · > T n

k > T n
k−1 > · · · > T n

2 > 0.

Lemma 3.6. Let 0 < α < 1 with ϱ = α
1−α . Then

0 <
A2

λ + β

n−2∑
k=2

e−ϱ(n−k−2)τ < 1,

where

λ = 1 − e−ϱτ

ατ
, β = 2(α − 1)(1 − e−ϱτ ) + ατ(1 + e−ϱτ )

2α2τ2 ,

A2 = (1 − e−ϱτ )((λ + β)e−ϱτ − β).
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Proof. Since A2 = (1 − e−ϱτ )((λ + β)e−ϱτ − β), we get

A2

λ + β

n−2∑
k=2

e−ϱ(n−k−2)τ = (λ + β)e−ϱτ − β

λ + β

n−2∑
k=2

(1 − e−ϱτ )e−ϱ(n−k−2)τ .

Firstly, we will show that 0 < (λ+β)e−ϱτ −β
λ+β < 1. For this purpose, we consider

(λ + β)e−ϱτ − β to be expanded into the following form:

(λ + β)e−ϱτ − β

= λe−ϱτ + β(e−ϱτ − 1)

= e−ϱτ − e−2ϱτ

ατ
+ (2α − 2)(2e−ϱτ − e−2ϱτ − 1) + ατ(e−2ϱτ − 1)

2α2τ2

= (2 − 2α − ατ)(e−2ϱτ − 2e−ϱτ + 1)
2α2τ2 .

For 0 < α < 1, we know that limτ→0(2−2α−ατ) > 0 and limτ→0(e−2ϱτ −2e−ϱτ +
1) > 0; then we obtain (λ + β)e−ϱτ − β > 0. By Lemma 3.5, we know that β > 0.
If τ → 0, we get

λ + β − ((λ + β)e−ϱτ − β) = λ(1 − e−ϱτ ) + β(2 − e−ϱτ ) > 0.

This means that λ + β > 0, and we get 0 < (λ+β)e−ϱτ −β
λ+β < 1.

By Lemma 3.4, we know that 0 <
∑n−2

k=2(1 − e−ϱτ )e−ϱ(n−k−2)τ < 1. Thus,

0 <
A2

λ + β

n−2∑
k=2

e−ϱ(n−k−2)τ < 1.

This completes the proof. □

By the proof of Lemma 3.6, we have (λ + β)e−ϱτ − β > 0. Hence, the following
remark is straightforward.

Remark 3.7. Let A1 = (λ + 2β)e−ϱτ − β, A2 = (1 − e−ϱτ )((λ + β)e−ϱτ − β) and
A3 = (λ + β)(1 − e−ϱτ ) + β. Then:

(i) A1 > 0, A2 > 0 and A3 > 0.
(ii) λe−2ϱτ − A1 < 0.

First we will give the proof of stability for the discrete scheme (2.3).

Theorem 3.8. Let Un be the solution of (2.3) with respect to the initial and bound-
ary conditions. Then

∥Un∥ ≤ C
(

∥U0∥ + max
1≤s≤n

∥fs∥
)

,

where C is a positive constant and n ∈ [N ].
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Proof. By (2.3), we get

(λ + β)HUn − aδ2
xUn = (λe−ϱτ − β)e−ϱ(n−2)τ HU0 − (λe−2ϱτ − A1)e−ϱ(n−3)τ HU1

+ A2

n−2∑
k=2

e−ϱ(n−k−2)τ HUk + A3HUn−1 + Hfn.

(3.1)
Multiplying both sides of (3.1) by HUn and integrating on Ω, we obtain

(λ + β)(HUn, HUn) − a(δ2
xUn, HUn)

= (λe−ϱτ − β)e−ϱ(n−2)τ (HU0, HUn) − (λe−2ϱτ − A1)e−ϱ(n−3)τ (HU1, HUn)

+ A2

( n−2∑
k=2

e−ϱ(n−k−2)τ HUk, HUn

)
+ A3(HUn−1, HUn) + (Hfn, HUn).

By Lemma 3.2, −a(δ2
xUn, HUn) = a(Un, Un)A ≥ 0. Then, we have

(λ + β)(HUn, HUn)

≤ (λe−ϱτ − β)e−ϱ(n−2)τ (HU0, HUn) − (λe−2ϱτ − A1)e−ϱ(n−3)τ (HU1, HUn)

+ A2

( n−2∑
k=2

e−ϱ(n−k−2)τ HUk, HUn

)
+ A3(HUn−1, HUn) + (Hfn, HUn).

(3.2)

By Remark 3.7, we have A2 > 0, A3 > 0 and −(λe−2ϱτ − A1) > 0. In (3.2), if
λe−ϱτ − β > 0, we get
(λ + β)∥HUn∥ ≤ (λe−ϱτ − β)e−ϱ(n−2)τ ∥HU0∥ − (λe−2ϱτ − A1)e−ϱ(n−3)τ ∥HU1∥

+ A2

n−2∑
k=2

e−ϱ(n−k−2)τ ∥HUk∥ + A3∥HUn−1∥ + ∥Hfn∥,

(3.3)

and if λe−ϱτ − β ≤ 0, we have
(λ + β)∥HUn∥ ≤ −(λe−2ϱτ − A1)e−ϱ(n−3)τ ∥HU1∥

+ A2

n−2∑
k=2

e−ϱ(n−k−2)τ ∥HUk∥ + A3∥HUn−1∥ + ∥Hfn∥.
(3.4)

Next, we want to prove by mathematical induction the inequality

∥HUn∥ ≤ C
(

∥HU0∥ + max
1≤s≤n

∥Hfs∥
)

,

where n ∈ [N ].
From the proof of Lemma 3.6, we see that λ+β > 0. If n = 1 and λe−ϱτ −β > 0,

then by (3.3) we have
(λ + β)∥HU1∥ ≤ (λe−ϱτ − β)eϱτ ∥HU0∥ − (λe−2ϱτ − A1)e2ϱτ ∥HU1∥

+ A3∥HU0∥ + ∥Hf1∥,
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i.e.,
(2λ + β − A1e2ϱτ )∥HU1∥ ≤ (λ − βeϱτ + A3)∥HU0∥ + ∥Hf1∥. (3.5)

For the above formula, we need to verify that

2λ + β − A1e2ϱτ ≥ c > 0. (3.6)

By (3.6), we get

2λ + β − A1e2ϱτ = λ(2 − eϱτ ) + β(1 + e2ϱτ − 2eϱτ ).

From Lemma 3.5, β > 0; therefore, β(1 + e2ϱτ − 2eϱτ ) = β(eϱτ − 1)2 > 0. For the
term λ(2 − eϱτ ), we get

λ(2 − eϱτ ) = (1 − e−ϱτ )(2 − eϱτ )
ατ

. (3.7)

In (3.7), as τ → 0, we get e−ϱτ → 1− and eϱτ → 1+, which means that

lim
τ→0

(1 − e−ϱτ ) > 0 and lim
τ→0

(2 − eϱτ ) > 0,

i.e., (1−e−ϱτ )(2−eϱτ ) > 0. Thus, as the parameter is given, 2λ+β−A1e2ϱτ ≥ c > 0
holds. Combining 2λ + β − A1e2ϱτ ≥ c > 0 and λ − βeϱτ + A3 > 0, we arrive at

0 <
λ − βeϱτ + A3

2λ + β − A1e2ϱτ
< C.

In summary, (3.5) can be written as

∥HU1∥ ≤ C(∥HU0∥ + ∥Hf1∥). (3.8)

Similarly, if n = 1 and λe−ϱτ −β ≤ 0, by (3.4), we also get the same result as (3.8).
Assume that

∥HUk∥ ≤ Ck−1

(
∥HU0∥ + max

1≤s≤k
∥Hfs∥

)
holds as k = 2, 3, . . . , n − 1, where Ck−1 is a positive constant and independent
of n. Then, for k = n, we want to prove the following inequality:

∥HUn∥ ≤ C
(

∥HU0∥ + max
1≤s≤n

∥Hfs∥
)

.

For k = n and λe−ϱτ − β > 0, by (3.3) and the Cauchy–Schwarz inequality, one
has

∥HUn∥ ≤ (λe−ϱτ − β)e−ϱ(n−2)τ

λ + β
∥HU0∥ − (λe−2ϱτ − A1)e−ϱ(n−3)τ

λ + β
∥HU1∥

+ A2

λ + β

n−2∑
k=2

e−ϱ(n−k−2)τ ∥HUk∥ + A3

λ + β
∥HUn−1∥ + 1

λ + β
∥Hfn∥.

(3.9)
Setting

Bk = A2

λ + β
e−ϱ(n−k−2)τ with 2 ≤ k ≤ n − 2, (3.10)
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we have
n−2∑
k=2

Bk∥HUk∥

≤ B2C1

(
∥HU0∥ + max

1≤s≤2
∥Hfs∥

)
+ B3C2

(
∥HU0∥ + max

1≤s≤3
∥Hfs∥

)
+ · · ·

+ Bn−2Cn−3

(
∥HU0∥ + max

1≤s≤n−2
∥Hfs∥

)
.

By Lemma 3.6, we have 0 <
∑n−2

k=2 Bk < 1. Let C = max {C1, C2, . . . , Cn−3},
which is independent of n. For the third term on the right-hand side of (3.9), we
obtain

n−2∑
k=2

Bk∥HUk∥ ≤ (B2 + B3 + · · · + Bn−2) C
(

∥HU0∥ + max
1≤s≤n−2

∥Hfs∥
)

≤
n−2∑
k=2

Bk C
(

∥HU0∥ + max
1≤s≤n−2

∥Hfs∥
)

≤ C
(

∥HU0∥ + max
1≤s≤n−2

∥Hfs∥
)

.

For the remaining terms on the right-hand side of (3.9), we just need to make sure
that their coefficients are greater than zero and bounded. In fact, λe−ϱτ − β > 0
and Remark 3.7 imply that the coefficients of the remaining terms are greater than
zero and bounded. In this way, we get

∥HUn∥ ≤ C
(

∥HU0∥ + max
1≤s≤n

∥Hfs∥
)

with n ∈ [N ]. (3.11)

Similarly, if k = n and λe−ϱτ − β ≤ 0, using (3.4), by a similar proof, we also get
the same result as (3.11).

Therefore, ∥HUn∥ ≤ C(∥HU0∥ + max1≤s≤n ∥Hfs∥). Applying Lemma 3.3, we
obtain

∥Un∥ ≤ C
(

∥U0∥ + max
1≤s≤n

∥fs∥
)

.

The proof of this theorem is finished. □

We can derive the convergence of the discrete scheme (2.3) in a manner similar
to the proof of Theorem 3.8.

Theorem 3.9. Let un be the solution of equation (1.1) and let Un be the solution
of the CFD scheme for (2.3). Define εn = un − Un, so that ε0 = 0. Then

∥εn∥ ≤ C(τ3 + h4),

where C is a positive constant and n ∈ [N ].
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Proof. Subtracting (2.3) from (2.2), we obtain

(λ + β)Hεn − aδ2
xεn = (λe−ϱτ − β)e−ϱ(n−2)τ Hε0 − (λe−2ϱτ − A1)e−ϱ(n−3)τ Hε1

+ A2

n−2∑
k=2

e−ϱ(n−k−2)τ Hεk + A3Hεn−1 + Rn.

(3.12)
Multiplying both sides of (3.12) by Hεn and integrating on Ω, we get

((λ + β)Hεn, Hεn) − a(δ2
xεn, Hεn)

= (λe−ϱτ − β)e−ϱ(n−2)τ (Hε0, Hεn) − (λe−2ϱτ − A1)e−ϱ(n−3)τ (Hε1, Hεn)

+ A2

( n−2∑
k=2

e−ϱ(n−k−2)τ Hεk, Hεn

)
+ A3(Hεn−1, Hεn) + (Rn, Hεn).

(3.13)

In (3.13), since −a(δ2
xεn, Hεn) = a(εn, εn)A ≥ 0 and ε0 = 0, by the Cauchy–

Schwarz inequality and the result of Lemma 3.1, we obtain

(λ + β)∥Hεn∥2 ≤ −(λe−2ϱτ − A1)e−ϱ(n−3)τ ∥Hε1∥∥Hεn∥

+ A2

n−2∑
k=2

e−ϱ(n−k−2)τ ∥Hεk∥∥Hεn∥ + A3∥Hεn−1∥∥Hεn∥

+ ∥Rn∥∥Hεn∥,

i.e.,

(λ + β)∥Hεn∥ ≤ −(λe−2ϱτ − A1)e−ϱ(n−3)τ ∥Hε1∥

+ A2

n−2∑
k=2

e−ϱ(n−k−2)τ ∥Hεk∥ + A3∥Hεn−1∥ + ∥Rn∥.
(3.14)

Next, we use mathematical induction to prove ∥Hεn∥ ≤ C(τ3+h4) with n ∈ [N ].
For n = 1, by (3.14), we have

(2λ + β − A1e2ϱτ )∥Hε1∥ ≤ A3∥Hε0∥ + ∥R1∥ = ∥R1∥.

Since ∥Rn∥ ≤ C(τ3 + h4), we obtain

∥Hε1∥ ≤ 1
2λ + β − A1e2ϱτ

∥R1∥ ≤ C(τ3 + h4).

Assume that
∥Hεk∥ ≤ C(τ3 + h4) (3.15)

holds as k = 2, . . . , n − 1. We will show that ∥Hεn∥ ≤ C(τ3 + h4). By (3.10) and
(3.15), the second term on the right-hand side of (3.14) can be obtained as

n−2∑
k=2

Bk∥Hεk∥ ≤ B2C1(τ3 + h4) + B3C2(τ3 + h4) + · · · + Bn−2Cn−3(τ3 + h4).
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Let C = max {C1, C2, . . . , Cn−2} be a positive constant and independent of n; by
(3.14)–(3.15) and Lemma 3.6, we obtain

∥Hεn∥ ≤ C(τ3 + h4)
n−2∑
k=2

Bk + ∥Rn∥ ≤ C(τ3 + h4) + ∥Rn∥.

Therefore, ∥Hεn∥ ≤ C(τ3 + h4). Applying Lemma 3.3, we arrive at 1
3 ∥εn∥2 ≤

∥Hεn∥2 ≤ ∥εn∥2, so that ∥εn∥ ≤
√

3∥Hεn∥, and then

∥εn∥ ≤ C(τ3 + h4).

The proof of this theorem is thus finished. □

The error estimation of our method with the Caputo–Fabrizio derivative and the
same one in [27] with the Caputo derivative imply that we can get the following
remark, which shows that the Caputo–Fabrizio derivative without singular term
can improve the accuracy of the discrete scheme.

Remark 3.10. The temporal convergence rate (TCR) of our method is τ3, and
the TCR of the method in [27] is τ2−α.

4. Numerical examples

In order to support our theoretical analysis in Section 3, we present some nu-
merical examples in this section. Let τ = T/N be the time stepsize and h = L/M
the space stepsize, with N and M positive integers. For the numerical experiments,
we used Matlab 2020a on a PC with an AMD Ryzen 5 3500U processor and 8 GB
of memory. We use the following error norm:

En(τ, h) = max
1≤n≤N

∥un − Un∥.

Define the temporal convergence rate (TCR) by

TCR = log(En(τ1, h)/En(τ2, h))/ log(τ1/τ2),

where En(τ1, h) and En(τ2, h) are the errors corresponding to mesh sizes τ1 and
τ2, respectively. Similarly, define the spatial convergence rate (SCR) by

SCR = log(En(τ, h1)/En(τ, h2))/ log(h1/h2),

where En(τ, h1) and En(τ, h2) are the errors corresponding to mesh sizes h1 and
h2, respectively. Also, in order to investigate the SCR, we can use

SCR = log(En(τ1, h1)/En(τ2, h2))/ log(h1/h2),

where τ1 ≪ h1 and τ2 ≪ h2 (we use τ = 1/1000 in Table 2, and τ1 = h2
1 and

τ2 = h2
2 in Table 4).
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Example 4.1. In the first example, for a = 1 and (x, t) ∈ [0, 1]×[0, 1], the equation
(1.1) will be 

CF
0 Dα

t u(x, t) = ∂2u

∂x2 + f(x, t),

u(x, 0) = 0,

u(0, t) = u(1, t) = 0,

where f(x, t) = sin(πx) 3
1−α ( t2

ϱ − 2t
ϱ2 + 2

ϱ3 (1 − e−ϱt)) + π2t3 sin(πx) and ϱ = α
1−α .

In this example, the exact solution of the equation can be obtained through
calculation. However, in order to verify the effectiveness of our method, we assume
that the exact solution of the equation is unknown and take the solution on the
finer grid (that is, M = N = 2000) as the corresponding exact solution. First, the
proposed scheme will be used to test the accuracy in the direction of time. In this
case, we take M = 200. The errors, TCRs and CPU times at different α (α = 0.1,
0.3, 0.5, and 0.7) are shown in Table 1. The data in Table 1 show that the TCR is
about 3. Furthermore, we will test the accuracy of our scheme for space. We chose
N = 1000 for α = 0.2, 0.4, 0.6, and 0.8 at different M (M = 10, 20, 40, and 80).
The errors, SCRs and CPU times are shown in Table 2. From Table 2 we can see
that SCRs are O(h4). The above data indicates that the numerical experimental
results are consistent with the theoretical analysis. A similar numerical example
can be found in [27, Example 1], where the fractional derivative is the form of
Caputo fractional derivative (with singular term). A comparison of the obtained
results with other existing methods reveals that our method is more accurate and
efficient for the time-fractional diffusion equation, where the fractional derivative
is the form of Caputo–Fabrizio derivative (without singular term).

We present the solution on a finer grid (that is, M = N = 2000), the numerical
solution (M = 200 and N = 2000), the absolute error and a contour plot of the
absolute error in Figure 1, in which we use α = 0.02. The error of numerical
and exact solutions is small. In Figure 2 (a), we show the TCRs of Example 4.1
for α = 0.1, 0.3, 0.5, and 0.7, respectively. In Figure 2 (b), we show the SCRs of
Example 4.1 for α = 0.2, 0.4, 0.6, and 0.8, respectively.

Example 4.2. For a = 1, T = 1 and L = 1, we want to consider the equation
(1.1) with exact solution u(x, t) = t3x3(1 − x)3. Then the source term is

f(x, t) = 3
1 − α

x3(1 − x)3i

(
t2

ϱ
− 2t

ϱ2 + 2
ϱ3 (1 − e−ϱt)i

)
+ 3t3x(1 − x)

(
2(1 − x)2 − 6x(1 − x) + 2x2)

,

where ϱ = α
1−α . The function φ(x) can be found by the exact solution u(x, t).

In order to verify TCRs, we fix the spatial meshes as M = 1000. We present
the errors, TCRs and CPU times in Table 3. For different values of α, the TCRs
of the CFD scheme reach the third order. In order to verify SCRs, we choose the
spatial meshes M and temporal meshes N as N = M2. The errors, SCRs and CPU
times are shown in Table 4. For different values of α, the SCRs of the CFD scheme

Rev. Un. Mat. Argentina



FINITE DIFFERENCE SCHEME FOR DIFFUSION EQUATIONS 601

Table 1. Errors, TCRs and CPU times for Example 4.1

M N En(τ, h) TCR CPU time

α = 0.1 200

50 6.2229×10−8 – 0.0603
60 3.6062×10−8 2.99 0.0807
70 2.2686×10−8 3.01 0.1039
80 1.5145×10−8 3.03 0.1240

α = 0.3 200

50 2.6388×10−7 – 0.0610
60 1.5328×10−7 2.98 0.0808
70 9.6736×10−8 2.99 0.0992
80 6.4872×10−8 2.99 0.1247

α = 0.5 200

50 6.6895×10−7 – 0.0627
60 3.8869×10−7 2.98 0.0777
70 2.4543×10−7 2.98 0.1026
80 1.6471×10−7 2.99 0.1259

α = 0.7 200

50 1.6354×10−6 – 0.0620
60 9.4984×10−7 2.98 0.0832
70 5.9965×10−7 2.98 0.1054
80 4.0243×10−7 2.99 0.1388

Table 2. Errors, SCRs and CPU times for Example 4.1

M N En(τ, h) SCR CPU time

α = 0.2

10

1000

3.6409×10−5 – 0.5056
20 2.2689×10−6 4.00 0.5842
40 1.4172×10−7 4.00 0.7930
80 8.8756×10−9 4.00 1.5948

α = 0.4

10

1000

3.5612×10−5 – 0.5024
20 2.2192×10−6 4.00 0.5903
40 1.3858×10−7 4.00 0.7865
80 8.6458×10−9 4.00 1.7361

α = 0.6

10

1000

3.4486×10−5 – 0.5081
20 2.1489×10−6 4.00 0.5872
40 1.3412×10−7 4.00 0.7849
80 8.2944×10−9 4.02 1.7771

α = 0.8

10

1000

3.2843×10−5 – 0.5218
20 2.0464×10−6 4.00 0.5998
40 1.2751×10−7 4.00 0.7798
80 7.6744×10−9 4.05 1.7200
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(a) Solution on finer grid (b) Numerical solution

(c) Absolute error (d) Contour plot of absolute error

Figure 1. The results of Example 4.1 with α = 0.02
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Figure 2. The TCRs and SCRs of Example 4.1 with given α
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Table 3. Errors, TCRs and CPU times for Example 4.2

M N L∞-Error L∞-Rate CPU time

α = 0.1 1000

40 1.5563×10−9 – 5.7114
80 1.9781×10−10 2.98 14.1234
120 5.8767×10−11 2.99 28.0687
160 2.4749×10−11 3.01 47.1467

α = 0.3 1000

80 8.3603×10−10 – 14.7304
120 2.4876×10−10 2.99 27.9238
160 1.0492×10−10 3.00 46.8027
200 5.3733×10−11 3.00 70.6237

α = 0.5 1000

80 2.1186×10−9 – 14.0054
120 6.3084×10−10 2.99 27.9049
160 2.6649×10−10 3.00 47.4357
200 1.3652×10−10 3.00 70.7949

α = 0.7 1000

80 5.1671×10−9 – 14.1410
120 1.5381×10−9 2.99 28.2142
160 6.5040×10−10 2.99 46.9748
200 3.3332×10−10 3.00 70.8377

reach the fourth order. The data of these tables show that our method provides
an approximate solution with high accuracy for Example 4.2.

In Figure 3, we present the exact and numerical solutions, the absolute error
and the contour plot of absolute error obtained from CFD scheme with α = 0.99
at M = 100 and N = 5000. The results show that the numerical solution of the
scheme has a high accuracy. In Figure 4 (a), we show the TCRs of Example 4.2
for α = 0.1, 0.3, 0.5, and 0.7, respectively. In Figure 4 (b), we show the SCRs of
Example 4.1 for α = 0.2, 0.4, 0.6, and 0.8, respectively. Figure 4 indicates that
the numerical solution produced by our method is in excellent agreement with the
exact solution.

Example 4.3. In the third example, we consider the 2D case for (1.1), in which
T = 1, L = 1, u(x, t) = t4 sin(πx) sin(2πy), and a = sin(πt−π/2). Then the source
term is

f(x, y, t) =
(

4
1 − α

(
t3

σ
− 3t2

σ2 + 6t

σ3 − 6
σ4 (1 − e−σt)

)
+ 5π2t4a

)
sin(πx) sin(2πy),

where σ = α
1−α . The function φ(x) can be found by substituting u(x, t) into (1.1).

In order to verify TCRs in this example, we fix the spatial meshes as M1 =
M2 = M = 120, where M1 and M2 denote the numbers of meshes in the x- and y-
directions, respectively. We present the errors and TCRs in Table 5. From Table 5,
we see that the TCRs of the CFD scheme reach the third order for different values
of α. In order to verify SCRs, we choose the spatial meshes M1 = M2 = M and
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Table 4. Errors, SCRs and CPU times for Example 4.2

M N L∞-Error L∞-Rate CPU time

α = 0.2

10 100 3.3398×10−5 – 0.0314
20 400 2.0874×10−6 4.00 0.2092
40 1600 1.3046×10−7 4.00 3.9552
80 6400 8.1538×10−9 4.00 133.7926

α = 0.4

10 100 3.2643×10−5 – 0.0266
20 400 2.0402×10−6 4.00 0.2169
40 1600 1.2752×10−7 4.00 3.9932
80 6400 7.9697×10−9 4.00 124.3089

α = 0.6

10 100 3.1578×10−5 – 0.0269
20 400 1.9737×10−6 4.00 0.2063
40 1600 1.2336×10−7 4.00 3.9823
80 6400 7.7099×10−9 4.00 124.0635

α = 0.8

10 100 3.0023×10−5 – 0.0259
20 400 1.8767×10−6 4.00 0.2090
40 1600 1.1729×10−7 4.00 3.9389
80 6400 7.3310×10−9 4.00 133.4166

Table 5. Errors and TCRs for Example 4.3

M N L∞-Error L∞-Rate

α = 0.3 120

10 4.4542×10−6 –
15 1.3860×10−6 2.88
20 5.9047×10−7 2.97
25 2.9650×10−7 3.09

α = 0.6 120

10 2.1343×10−5 –
15 6.5900×10−6 2.90
20 2.8390×10−6 2.93
25 1.4659×10−6 2.96

α = 0.9 120

10 1.7720×10−4 –
15 5.2434×10−5 3.00
20 2.2203×10−5 2.99
25 1.1405×10−5 2.99

temporal meshes N = 300. The errors and SCRs are shown in Table 6. From
Table 6, we see that the SCRs of the CFD scheme reach the fourth order for
different values of α. The data of these tables show that our method provides an
approximate solution with high accuracy for the 2D case of (1.1).
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(a) Exact solution (b) Numerical solution

(c) Absolute error (d) Contour plot of absolute error

Figure 3. The results of Example 4.2 with α = 0.99 at M = 100
and N = 5000
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Figure 4. The TCRs and SCRs of Example 4.2 with given α
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Table 6. Errors and SCRs for Example 4.3

M N L∞-Error L∞-Rate

α = 0.2

10

300

5.2223×10−4 –
20 3.3923×10−5 3.94
30 6.6497×10−6 4.01
40 2.1139×10−6 3.98

α = 0.5

10

300

5.2736×10−4 –
20 3.4255×10−5 3.95
30 6.7145×10−6 4.01
40 2.1342×10−6 3.98

α = 0.8

10

300

5.3864×10−4 –
20 3.4986×10−5 3.95
30 6.8559×10−6 4.01
40 2.1776×10−6 3.99

5. Conclusion

In this paper, we present a new CFD scheme for TFDEs. First, we develop
a third-order approximation for the Caputo–Fabrizio derivative. For spatial dis-
cretization, we apply a fourth-order CFD scheme. The resulting method achieves
third-order accuracy in time and fourth-order accuracy in space. We also prove
that the scheme is stable. Finally, we provide numerical examples that confirm
the correctness of the theoretical analysis. In future work, we will study numeri-
cal solutions of high-dimensional fractional differential equations and problems on
complex domains.

References
[1] S. Abbas, M. Benchohra, and J. J. Nieto, Caputo–Fabrizio fractional differential equations

with non instantaneous impulses, Rend. Circ. Mat. Palermo (2) 71 no. 1 (2022), 131–144.
DOI MR Zbl

[2] T. Akman, B. Yıldız, and D. Baleanu, New discretization of Caputo–Fabrizio derivative,
Comput. Appl. Math. 37 no. 3 (2018), 3307–3333. DOI MR Zbl

[3] A. Atangana, Non validity of index law in fractional calculus: A fractional differential
operator with Markovian and non-Markovian properties, Phys. A 505 (2018), 688–706. DOI
MR Zbl

[4] A. Atangana, Modelling the spread of COVID-19 with new fractal-fractional operators: Can
the lockdown save mankind before vaccination?, Chaos Solitons Fractals 136 (2020), Paper
No. 109860. DOI MR
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