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HAMILTONICITY OF RECTANGULAR GRID GRAPHS
(MESHES) WITH AN L-SHAPED HOLE

MOVAHEDEH ROUHANI-MARCHOOBEH AND FATEMEH KESHAVARZ-KOHJERDI

Abstract. Finding the Hamiltonian cycles in graphs is a well-known prob-
lem. Although the Hamiltonicity of grid graphs has been studied in the lit-
erature, there are few results on Hamiltonicity of grid graphs with holes. In
this paper, we study the Hamiltonicity of rectangular grid graphs (meshes)
with an L-shaped hole, and give a linear-time algorithm. The holes in meshes
correspond to the faulty nodes.

1. Introduction

The Hamiltonian cycle problem is one of the most important problems in com-
puter science and mathematics. In this problem, the goal is to find a cycle that
passes through every vertex of a graph, exactly once. There are various studies
and results regarding the Hamiltonian cycle problem in graphs [3]. A grid graph
is a subgraph of the infinite grid where the vertices have integer coordinates and
there is an edge between two vertices if their Euclidean distance is 1, see Fig. 1 (a)
and 1 (b).

One application of the Hamiltonian cycle problem in grid graphs is in the ex-
ploration problem. Specifically, the off-line exploration problem involves a mobile
robot that needs to visit every cell in a known cellular room and return to the
starting point, while minimizing the number of cells that are visited multiple times
by the robot. This exploration problem can be translated into finding a tour in a
grid graph that visits all the vertices, where each vertex corresponds to a cell in
the environment. Thus, exploring the cellular room without revisiting any cell is
equivalent to finding a Hamiltonian cycle in the corresponding grid graph. In this
context, the environment is divided into cells, each represented by a vertex in the
grid graph, and two vertices are considered adjacent if their corresponding cells
share a common edge [10, 13].

Itai et al. [12] showed that the Hamiltonian cycle problem is NP-complete for
general grid graphs. However, they also proposed a linear-time algorithm for find-
ing Hamiltonian paths in rectangular grid graphs. Chen et al. [5] improved Itai’s

2020 Mathematics Subject Classification. Primary 05C85; Secondary 05C45, 05C90, 68T40.
Key words and phrases. Hamiltonicity, Hamiltonian cycle, grid graphs, rectangular grid graphs

with an L-shaped hole.

611

https://doi.org/10.33044/revuma.4432


612 M. ROUHANI-MARCHOOBEH AND F. KESHAVARZ-KOHJERDI

(a) (b) (c)

Figure 1. (a) An infinite grid; (b) a grid graph; and (c) a super-
grid graph.

algorithm and proposed a parallel algorithm for solving the problem on mesh ar-
chitectures. Zamfirescu and Zamfirescu [25] provided sufficient conditions for a
grid graph to be Hamiltonian. A graph is called Hamiltonian if it has a Hamil-
tonian cycle. Afrati [1] presented a linear-time algorithm for finding Hamiltonian
cycles in staircase grid graphs. Umans and Lenhart [24] introduced an O(n4)-
time algorithm for finding Hamiltonian cycles in solid grid graphs with 2-factors.
They posed the question of whether a polynomial-time algorithm exists for finding
Hamiltonian cycles in grid graphs with specific types of holes. Salman [23, 22] iden-
tified classes of alphabet grid graphs that have Hamiltonian cycles. Alphabet grid
graphs are a special type of grid graphs with shapes resembling alphabet charac-
ters. Keshavarz-Kohjerdi and Bagheri [14, 16, 18] presented linear-time algorithms
for finding Hamiltonian paths and cycles in rectangular grid graphs with rectangu-
lar holes. Nishat and Whitesides [20] studied the reconfiguration of Hamiltonian
cycles in L-shaped grid graphs.

Islam et al. [11] proved that finding Hamiltonian cycles is NP-complete for hexag-
onal grid graphs. Reay and Zamfirescu [21] and Gordon et al. [6] explored the
Hamiltonian cycle problem in triangular grid graphs. Arkin et al. [2] established
complexity results for the Hamiltonicity of various classes of square, triangular, and
hexagonal grids. Hou and Lynch [7] investigated the Hamiltonian cycle problem
in grid graphs of semiregular tessellations and proved its NP-completeness. Hung
et al. [9] demonstrated that the Hamiltonian cycle and path problems in general
supergrid graphs are NP-complete. In supergrid graphs, besides of the edges in
grid graphs, we also have edges between vertices of Euclidean distance

√
2, see

Fig. 1 (c). They also showed that linear-convex supergrid graphs always contain
Hamiltonian cycles [8]. Keshavarz-Kohjerdi and Bagheri studied the Hamiltonicity
and Hamiltonian-connectivity of solid supergrid graphs [17, 19].

As mentioned, there are various results on the Hamiltonicity of solid grid graphs,
but only few results for grid graphs that have holes. In this paper, we study the
Hamiltonicity of rectangular grid graphs with an L-shaped hole, and give a linear-
time algorithm.

The structure of the paper is as follows. Section 2 provides the necessary pre-
liminaries and presents some relevant known results on grid graphs. The algorithm
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is described in Section 3. The conclusions and directions for future work are given
in Section 4.

2. Preliminaries

In this section, we review the definitions and the results that we need throughout
the paper. These definitions and results have been previously established in [12,
14, 17].

A grid graph, denoted by Gg = (V (Gg), E(Gg)), is a subgraph of the infinite
grid where the vertices have integer coordinates. In this graph, two vertices are
connected by an edge if their Euclidean distance is equal to one, as illustrated in
Fig. 2 (a). Let v ∈ V (Gg), we use the notation vx to represent the x-coordinate
and vy to represent the y-coordinate of v, respectively. We say that two vertices
u and v are adjacent if there exists an edge between them, i.e., (u, v) ∈ E(Gg),
and we denote it by u ∼ v. Additionally, we say that two edges e1 = (v1, u1) and
e2 = (v2, u2) are parallel if v1 ∼ v2 and u1 ∼ u2. It is clear that every vertex in Gg,
such as v, is adjacent to at most four neighbouring vertices: the down neighbour
D(v) = (vx, vy − 1), the left neighbour L(v) = (vx − 1, vy), the up neighbour
U(v) = (vx, vy + 1), and the right neighbour R(v) = (vx + 1, vy). The degree of a
vertex v is equal to the number of adjacent vertices of v. We denote the degree of
vertex v by d(v).

v u
z

(a) (b) (c)

Figure 2. (a) A grid graph with a hole; (b) definitions of the cut
vertex and the vertex cut; and (c) a solid grid graph.

Let Gg be a connected graph and V ′ be a subset of the vertex set V (Gg). V ′ is a
vertex cut of G if removing V ′ from Gg, denoted by Gg\V ′, results in a disconnected
graph. A vertex v of Gg is considered a cut vertex of Gg if the singleton set {v}
forms a vertex cut of Gg. For instance, in Fig. 2 (b), the vertex z is a cut vertex
since removing it results in a disconnected graph. In Fig. 2 (b), the set {v, u} is a
vertex cut.

A solid grid graph is a grid graph in which all the internal faces are unit squares
(see Fig. 2 (c)). A grid graph Gg is referred to as a rectangular grid graph, denoted
by R(m, n) (or simply GR), if its vertex set V (Gg) includes all the vertices v of the
infinite grid, where 1 ⩽ vx ⩽ m and 1 ⩽ vy ⩽ n. Fig. 3 (a) illustrates a rectangular
grid graph R(5, 4). R(m, n) is a k-rectangle if either m = k or n = k. A rectangular
grid graph GR = R(m, n) is characterized by four corners: the top-left, the top-
right, the bottom-left, and the bottom-right corners. In this paper, we establish
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the convention that the top-left, top-right, bottom-left, and bottom-right corners
of GR are positioned at coordinates (1, 1), (m, 1), (1, n), and (m, n), respectively
(see Fig. 3 (a)).

(1, 1) (m, 1)

(1, n) (m,n)

(a)

k

l

m

n

(b) (c)

Figure 3. (a) An example of a rectangular grid graph; (b) defin-
ing parameters of an L-shaped grid graph; and (c) an example of
an L-shaped grid graph.

Grid graphs are bipartite graphs, which means they are two-colorable. There-
fore, we can color their vertices using two colors, say black and white. If vx + vy

is even, then the vertex v is colored white; otherwise, it is colored black. It is evi-
dent that every cycle (or path) in Gg alternates between black and white vertices.
We denote the set of black and white vertices by VB and VW , respectively. The
number of black and white vertices in graph Gg may be different. The color that
is assigned to the majority of vertices is called the majority color, while the other
color is referred to as the minority color.

x1 k

l

n

m

x1 x2

y1

y2

m

n

(a) (b) (c) (d)

x2

n′

m′

k

l

Figure 4. (a) Defining parameters of a C-shaped grid graph;
(b) an example of a C-shaped grid graph; (c) defining parame-
ters of a rectangular grid graph with an L-shaped hole (denoted
by RL), and (d) an example of RL.

A rectangular grid graph with a rectangular hole is a rectangular grid graph
R(m, n) from which a rectangular grid subgraph R(k, l) is removed, where k, l ⩾ 1
and m, n > 1. When R(m, n) shares exactly two adjacent sides with R(k, l)
(as shown in Fig. 3 (b) and 3 (c)), we obtain an L-shaped grid graph denoted
by L(m, n; k, l) (or simply GL). If R(m, n) shares exactly one border side with
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R(k, l) (as depicted in Fig. 4 (a) and 4 (b)), we obtain a C-shaped grid graph
denoted by C(m, n; k, l; x1) (or simply GC). It should be noted that x1 ⩾ 1,
x2 = m − k − x1 ⩾ 1, and n − l ⩾ 1. If Gg is an L-shaped or a C-shaped grid
graph, the number of vertices in Gg can be calculated as mn − kl. The number
of vertices of a grid graph Gg is defined as the order of Gg and denoted by |Gg|.
A grid graph Gg has an even order if |VB | = |VW |. Conversely, a grid graph Gg

has an odd order if ||VB | − |VW || = 1.
A rectangular grid graph with an L-shaped hole is a rectangular grid graph

R(m, n) such that an L-shaped grid subgraph L(m′, n′; k, l) is removed from it,
where m, n > 3, m′, n′ > 1, and k, l ≥ 1. Let RL(m, n; m′, n′; k, l; x1, y1) be a
rectangular grid graph R(m, n) with an L-shaped grid subgraph L(m′

, n
′ ; k, l) as

its hole, as shown in Fig. 4 (c) and 4 (d). Let x2 = m−x1 −m′ and y2 = n−y1 −n′.
In this paper, we assume that x1, x2, y1, and y2 are greater than zero, i.e., the
hole has no common border with R(m, n). In the following, for simplicity, we use
RL interchangeably with RL(m, n; m′, n′; k, l; x1, y1). Let s and t be two specified
vertices of Gg. We say (Gg, s, t) is color-compatible if Gg is even-ordered and s
and t have different colors or Gg is odd-ordered and s and t have the majority
color. It is evident that the color-compatibility of (Gg, s, t) is a necessary condition
for the existence of a Hamiltonian path in Gg between vertices s and t [12].

The article [12] has already provided necessary and sufficient conditions for
a rectangular grid graph to be Hamiltonian. In this paper, we present several
established results and offer redefined versions of some of them.

Lemma 2.1 ([12]). A rectangular grid graph GR is Hamiltonian if and only if it
does not meet the conditions FC1 and FC2 as defined below:

FC1: |VB | ̸= |VW |.
FC2: GR contains a cut vertex.

Lemma 2.2 ([14]). In a rectangular grid graph GR, we can always find a Hamil-
tonian cycle that contains all the boundary edges of the four sides N, W, S, and E
of GR as shown in Fig. 5 (a), except at most one side of GR which includes bound-
ary edges every other one.

Clearly, if either FC1 or FC2 holds for any grid graph Gg, it implies that the
graph is not Hamiltonian. In any bipartite graph, the vertices of any cycle alternate
between black and white colors, resulting in |VB | = |VW |. It is also a well-known
fact that any Hamiltonian graph does not contain a cut vertex [4]. Therefore, in
the following, we assume that FC1 and FC2 do not hold, implying that the grid
graph satisfies the necessary conditions for being Hamiltonian.

A one-bridge is a one-rectangle subgraph of Gg in which all vertices have degree
two in Gg; a two-bridge is a two-rectangle subgraph of Gg in which all vertices
have degree three in Gg; and a three-bridge is a three-rectangle subgraph of Gg in
which the vertices with y-coordinates y or y + 2 (resp. x-coordinates x or x + 2)
have degree three in Gg, while the other vertices have degree four in Gg. Assume
the top-left vertex of the three-rectangle has coordinate (x, y). Fig. 5 (b) illustrates
examples of one-bridge, two-bridge, and three-bridge subgraphs.
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Figure 5. (a) A rectangular grid graph with four sides N, W, S,
and E; (b) examples of one, two, and three-bridges; and (c) an
example of forbidden condition FC3.

Lemma 2.3 ([16]). A C-shaped grid graph GC is Hamiltonian if and only if it
does not satisfy conditions FC1–FC3, where condition FC3 is defined as follows:

FC3: Let G1 be a grid subgraph of GC that is connected to GC \ G1 by a two-
bridge (see Fig. 5 (c)). Let two vertices s and t be the connecting vertices
of G1 to the two-bridges. And (G1, s, t) is not color-compatible.

Theorem 2.4 ([12, 15]). Let Gg be a rectangular or a C-shaped grid graph. The
Hamiltonian cycle of Gg can be constructed in linear time.

In [18], Keshavarz-Kohjerd and Bagheri provided necessary and sufficient con-
ditions for the existence of Hamiltonian cycles in rectangular grid graphs with
rectangular holes. In the following, we utilize their results to construct Hamilton-
ian cycles in rectangular grid graphs with an L-shaped hole. The two forbidden
conditions FC4 and FC5 are defined as follows:

FC4: Let G1 be a grid subgraph of Gg that is connected to Gg \ G1 by two
one-bridges (see Fig. 6 (a) and 6 (b)). Assume two vertices s and t are the
connecting vertices of G1 to the one-bridges. And (G1, s, t) is not color-
compatible.

FC5: Let G1 be a grid subgraph of Gg that is connected to Gg \G1 by exactly
one one-bridge and one three-bridge. Let w be the connecting vertex of
the one-bridge to G1, and u, v, and z be the connecting vertices of the
three-bridge to G1, where d(z) = 4 (see Fig. 6 (c) and 6 (d)). Let s, t ∈ G1
such that s ∼ w and t ∼ z, and (G1, s, t) is color-compatible.

Theorem 2.5 ([18]). For any grid graph Gg to be Hamiltonian, the forbidden
conditions FC1–FC5 should not hold.

Note that the conditions FC2 and FC3 do not occur for grid graphs with holes.

Corollary 2.6. A rectangular grid graph with an L-shaped hole has a Hamiltonian
cycle if the conditions FC1, FC4, and FC5 are not satisfied.
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Figure 6. Examples of forbidden conditions FC4 and FC5 in RL.

3. The algorithm

In this section, we present an algorithm for finding a Hamiltonian cycle in a
rectangular grid graph with an L-shaped hole, denoted by RL. This algorithm is
based on a divide-and-conquer approach. If any of the forbidden conditions FC1,
FC4, and FC5 holds for RL, then it is not Hamiltonian. So, in the following we
assume that these forbidden conditions do not hold for RL. Initially, the graph
is divided into several subgraphs, and then a Hamiltonian cycle is obtained in
each subgraph. Finally, by combining the Hamiltonian cycles of the subgraphs,
a Hamiltonian cycle in the original graph is obtained. We will now explain the
details of each step of the algorithm.

To begin, we partition RL into at most five grid subgraphs, G1 = R(m1, n1),
G2 = R(m2, n2), G3 = R(m3, n3), G4 = R(m4, n4), and G5 = RL \ (G1 ∪ G2 ∪
G3 ∪ G4), by making two vertical and two horizontal cuts, where m1 = r1, n1 = n,
m2 = m − r2 + 1, n2 = n, m3 = m − m1 − m2, n3 = r3, m4 = m − m1 − m2,
n4 = n − r4 + 1, and r1 to r4 are defined as follows:

r1 =
{

x1 − 1 if x1 ≡ 1 (mod 2),
x1 − 2 otherwise;

r2 =
{

x1 + m′ + 2 if x1 + m′ + 1 ≡ m (mod 2),
x1 + m′ + 3 otherwise;

r3 =
{

y1 − 1 if y1 ≡ 1 (mod 2),
y1 − 2 otherwise;

r4 =
{

y1 + n′ + 2 if y1 + n′ + 1 ≡ n (mod 2),
y1 + n′ + 3 otherwise.

Here, r1 represents the right-most column of G1, r2 the left-most column of G2,
r3 the bottom-most row of G3, and r4 the top-most row of G4. Note that if x1,
x2, y1, and y2 in RL are 1 or 2, then G1, G2, G3, and G4 are empty, respectively.
See Fig. 7 for a visual illustration. Notice that G5 = RL(m − m1 − m2, n − n3 −
n4; m′, n′; k, l; x1 − m1, y1 − n3), m3 = m4, and m3 > 2. A simple verification
indicates that m1, m2, n3, and n4 are even. Therefore for each subgraph Gi, where

Rev. Un. Mat. Argentina, Vol. 68, No. 2 (2025)



618 M. ROUHANI-MARCHOOBEH AND F. KESHAVARZ-KOHJERDI

G1 G2G3

G4

G5

G1 G3

G4

G5

G3

G4

G5

Figure 7. Dividing RL into several subgraphs.

1 ⩽ i ⩽ 5, we have |VB(Gi)| = |VW (Gi)|. Since |VB(Gi)| = |VW (Gi)|, 1 ⩽ i ⩽ 4,
and n, m3, m4 > 1, based on Lemma 2.1 it follows that G1 to G4 have Hamiltonian
cycles. Furthermore, according to the algorithm presented in [5], a Hamiltonian
cycle can be constructed in G1 to G4.

If G5 does not satisfy the forbidden conditions FC4 and FC5, then its Hamilton-
ian cycle is constructed following the patterns given in Figs. 9–11. Which pattern
is used depends on the dimensions of G5. In the following, omitting similar cases,
we consider only the following distinct cases:

(1) Both m and n are even and [(k is even) or (both k and l are odd)].
(2) Both m and n are odd and [(k is even) or (both k and l are odd)].
(3) m is odd and n is even.

Then Hamiltonian cycles in the subgraphs are combined by using parallel edges.
Let G1 and G2 be two subgraphs of RL, and HC1 (resp. HC2) be a Hamiltonian
cycle of G1 (resp. G2). Assume that e1 = (v1, u1) ∈ HC1 and e′

1 = (v2, u2) ∈ HC2
are two parallel edges. We can merge HC1 and HC2 into one cycle, as a Hamiltonian
cycle of G1 ∪G2, by removing e1 and e′

1, and adding two edges (v1, v2) and (u1, u2),
see Fig. 8. This is called the merge operation, and denoted by ⊕. In the following
lemma, we demonstrate how Hamiltonian cycles in the subgraphs G1 to G5 can be
combined.

e1 e′1

v1

u1

v2

u2

HC1 HC2

v1

u1

v2

u2

(a) (b)

Figure 8. The merge operation.

Rev. Un. Mat. Argentina, Vol. 68, No. 2 (2025)



HAMILTONICITY OF GRID GRAPHS WITH AN L-SHAPED HOLE 619

Figure 9. A Hamiltonian cycle in G5, in the case where x1 = 1
and y2 = 1, in G5.

Figure 10. A Hamiltonian cycle in G5, in the case where x1 = 1
and y2 = 2, in G5.

Figure 11. A Hamiltonian cycle in G5, in the case where x1 = 2,
in G5.

Lemma 3.1. Let G1, G2, G3, G4, and G5 be a partition of RL, as previously
defined. Let HC1, HC2, HC3, and HC4 represent the Hamiltonian cycles in G1,
G2, G3, and G4, respectively. If G5 does not satisfy the conditions FC4 and FC5,
then the Hamiltonian cycle of RL, i.e., HC(RL), can be constructed by merging
HC1, HC2, HC3, HC4, and the Hamiltonian cycle in G5 (HC5).
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G1 G3 G2
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e2 e′2
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v1

v3
v2

v4

u1

u2

u3

u4

G1 G3 G2

G5

G4

(a) (b)

Figure 12. Merging HC1, HC2, HC3, HC4, and HC5.

Proof. Let v1 = (r1 + 1, r4 − 1), u1 = (r1 + 1, r4 − 2), v2 = (r2 − 1, r3 + 1),
u2 = (r2 − 1, r3 + 2), v3 = (r1 + 1, r3 + 1), u3 = (r1 + 2, r3 + 1), v4 = (r2 − 1, r4 − 1),
and u4 = (r2 − 2, r4 − 1). Since d(v1) = d(v2) = d(v3) = d(v4) = 2 in G5, the
edges e1 = (v1, u1), e2 = (v2, u2), e3 = (v3, u3), and e4 = (v4, u4) are included
in any Hamiltonian cycle HC5 of G5 (see Fig. 12 (a)). Let e′

1, e′
2, e′

3, and e′
4 be

the edges of G1, G2, G3, and G4 that are parallel to the edges e1, e2, e3, and e4,
respectively. According to Lemma 2.2, it is always possible to make Hamiltonian
cycles HC1, HC2, HC3, and HC4 such that it includes the edges e′

1, e′
2, e′

3, and
e′

4, respectively. If the subgraphs G1, G2, G3, and G4 are not empty, then we can
merge their Hamiltonian cycles by the Hamiltonian cycle HC5 of G5, using the
parallel edges ei and e′

i, 1 ⩽ i ⩽ 4 (see Fig. 12 (b)). □

Now, consider the case where G5 satisfies FC4 or FC5.

Lemma 3.2. If G5 satisfies FC4 or FC5, then one of the following conditions
occurs for RL:

C1: n is even, m and x1 are odd, and either
(a) x2 is odd, y2 is even, or
(b) k = 1 and x2, l, and y1 are even.

C2: m, n, and y2 are even, l is odd, and either
(a) k, x2, and y1 are odd and x1 is even, or
(b) k, x2, and y1 are even, x1 is odd, and l = 1.

Proof. We have assumed that FC4 and FC5 do not hold for the given grid graph
RL. After dividing RL into G1 to G5, in G5, the variables x1, x2, y1, and y2 take
values of either 1 or 2. If FC4 holds for G5, then there are two possible cases:

Case 1. In RL, x1, x2, and m are odd, and y2 is even. This case corresponds to
C1(a).

Case 2. In RL, k, l, y1, and x2 are odd. This case corresponds to C2(a).
If FC5 holds for G5, then x2 is even, x1 is odd, and there are two possible cases:
Case 1. In RL, k = 1, l is even, m is odd, and y2 + (n′ − l) is even. This case

corresponds to C1(b).
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Case 2. In RL, l = 1, k is even, x1 is odd, y1 and x1 + (m′ − k) are even. This
case corresponds to C2(b). □

In the following, we explain how to construct a Hamiltonian cycle in RL in the
case where one of the conditions C1 or C2 occurs. We consider two cases.

Case I: x1 = 1, x2 = 1, y1 = 1, or y2 = 1. This case is investigated in
Lemma 3.3.

Case II: x1 > 1, x2 > 1, y1 > 1, and y2 > 1. This case is investigated in
Lemma 3.4.

Lemma 3.3. Assume that RL satisfies condition C1 or C2, and Case I holds. If
RL does not satisfy conditions FC4 and FC5, then RL has a Hamiltonian cycle.

Proof. In this case, by modifying the values of r1, r2, or r3, we transform the
subgraph G5 into a state that has a Hamiltonian cycle.

Let C1(a) hold; then x1 and x2 are odd. Here, we have x1 ⩾ 5 or x2 ⩾ 5.
Because if both x1 and x2 are less than 5, then either condition FC4 or FC5 is
satisfied for RL. If x1 ⩾ 5, we modify r1 as r1 = x1 − 2. If x2 ⩾ 5 and x1 = 1, then
if (l > 1) or (l = 1 and y1 is odd), we modify r2 as r2 = x1 + m′ + 3. Otherwise,
we modify r1 and r3 as r1 = x1 − 2 and r3 = y1 − 1, respectively. Let C1(b) hold;
then x2 is even and x2 > 2. Because if x2 = 2, then either condition FC4 or FC5
is satisfied for RL. In this case, we modify r2 as r2 = x1 + m′ + 2. Since n is even,
|VB(Gi)| = |VW (Gi)|, where i = 1 or 2. Also, since n3 is even or m − m1 − m2 is
even, |VB(G3)| = |VW (G3)|.

Let C2(a) hold; then x1 is even, and y1 and x2 are odd. We have x2 ⩾ 5 or
y1 ⩾ 5. Because if both x2 and y1 are less than 5, then either condition FC4 or
FC5 is satisfied for RL. If x2 ⩾ 5, then we modify r2 as r2 = x1 + m′ + 3. If x2 = 1
and y1 ⩾ 5, then we modify r3 as r3 = y1 − 2. Let C2(b) hold; then x1 is odd,
and y1, y2, and x2 are even. Here, y1 > 2 and x1 = 1. Because if y1 = 2, then the
condition FC5 is satisfied for RL. In this case, we modify r3 as r3 = y1 − 1. Since
n and m are even, |VB(Gi)| = |VW (Gi)|, where i = 2 or 3.

A simple check reveals that G5 has a Hamiltonian cycle, and its Hamiltonian
cycle is one of the patterns given in Figs. 9–11. Combining the Hamiltonian cycle
HC5 of G5 with the Hamiltonian cycles HC1, HC2, HC3, and HC4 of G1, G2, G3,
and G4, respectively, are done according to Lemma 3.1. □

Lemma 3.4. Assume that RL satisfies condition C1 or C2, and Case II holds. If
RL does not satisfy conditions FC4 and FC5, then RL has a Hamiltonian cycle.

Proof. Based on the value of y2, we consider the following two cases.
Case 1. y2 is even. We divide RL into two connected components, G1 =

C(n, x; n′, m′ − k; y1) and G2 = C(n, m − x; n′ − l, k; y1 + l), by a vertical cut
at x + m′ − k, as illustrated in Fig. 13 (a). Consider the subgraph G1. First, let
y1 is even. Since n, y2, and y1 are even, we observe that |VB(G1)| = |VW (G1)|.
Now, let y1 is odd, then k and l are odd. A simple check shows that m′ is odd and
m′ − k is even. Since n and m′ − k are even, we have |VB(G1)| = |VW (G1)|. Since
|VB(RL)| = |VW (RL)|, we can deduce that |VB(G2)| = |VW (G2)|. So, FC1 does
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not hold. We assumed that Case II holds, so FC2 does not hold. Since [(x1 > 2)
or (x1 = 2 and y2 is even)] and [(x2 > 2) or (x2 = 2 and y2 is even)], the condition
FC3 is not met for G1 and G2. Based on Lemma 2.3, it can be concluded that both
G1 and G2 have a Hamiltonian cycle. According to the algorithm described in [15],
a Hamiltonian cycle is constructed in G1 and G2. Finally, the Hamiltonian cycles
are combined using two parallel edges, e1 = (v1, u1) and e′

1 = (v2, u2), resulting
in a Hamiltonian cycle in RL (see Fig. 13 (b)). Let v1 = (x, n), u1 = (x, n − 1),
v2 = (x + 1, n), and u2 = (x + 1, n − 1). Since d(v1) = 2 (in G1) and d(v2) = 2 (in
G2), the edges e1 = (v1, u1) and e′

1 = (v2, u2) are in any Hamiltonian cycle of G1
and G2, respectively.

G1 G2

v1 v2

e1 e′1

u1 u2

G1 G2 G1

G2

v2
v1 e1

e′1

(a) (b) (c)

u1

u2

Figure 13. Combining Hamiltonian cycles in G1 and G2.

Case 2. y2 is odd. In this case, only condition C1(b) occurs. Clearly, y1 and l are
even. We divide RL into two connected components, G1 = C(m, y; m′ − k, l; x1)
and G2 = C(m, n−y; m′, n′ − l; x1), by a horizontal cut at y = y1 + l, as illustrated
in Fig. 13 (c). Since y1 and y are even, we conclude that |VB(G1)| = |VW (G1)|.
Since |VB(RL)| = |VW (RL)|, we can deduce that |VB(G2)| = |VW (G2)|. So, FC1
does not hold. We assumed that Case II holds, so FC2 does not hold. Since y
and n − y are even, the condition FC3 is not met for G1 and G2. A Hamiltonian
cycle in RL can be constructed similarly to Case 1. Here, let v1 = (1, y + 1),
u1 = (2, y + 1), v2 = (1, y), and u2 = (2, y). Since d(v1) = 2 (in G1) and d(v2) = 2
(in G2), edges e1 = (v1, u1) and e′

1 = (v2, u2) are in any Hamiltonian cycle of G1
and G2, respectively. □

Theorem 3.5. A rectangular grid graph R(m, n) with an L-shaped hole L(m′, n′;
k, l) is Hamiltonian if and only if none of the forbidden conditions FC1, FC4, and
FC5 hold.

Algorithm 1 shows the pseudo code of the algorithm. In the pseudo code, by ⊕
we mean the merge operation.

Theorem 3.6. A Hamiltonian cycle for a rectangular grid graph with an L-shaped
hole can be constructed in linear time.

Proof. To compute a Hamiltonian cycle for RL, first we divide RL into at most five
subgraphs G1, G2, G3, G4, and G5. This partitioning is done in O(1) time. Then
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Algorithm 1 HamCycle (RL)
1: Input: a rectangular grid graph R(m, n) with an L-shaped hole L(m′, n′; k, l)
2: Output: a Hamiltonian cycle of RL

3: if any of the conditions FC1, FC4, and FC5 holds for RL then
4: report RL is not Hamiltonian, and exit.
5: else
6: Partitioning RL into at most five grid subgraphs G1 to G5

by making two vertical cuts and two horizontal cuts.
7: if none of the conditions FC4 or FC5 are satisfied for G5 then
8: Let HC1, HC2, HC3, HC4, and HC5 be the Hamiltonian cycles

in G1, G2, G3, G4, and G5, respectively.
9: return HC(RL) = (HC1 ⊕ (HC2 ⊕ (HC3 ⊕ (HC4 ⊕ HC5))))

10: end if
11: if any of the conditions FC4 or FC5 holds for G5 then
12: if x1 = 1, x2 = 1, y1 = 1, or y2 = 1 then
13: Modify the partitioning of RL According to Lemma 3.3.
14: Let HC1, HC2, HC3, HC4, and HC5 be the Hamiltonian cycles

in G1, G2, G3, G4, and G5, respectively.
15: return HC(RL) = (HC1 ⊕ (HC2 ⊕ (HC3 ⊕ (HC4 ⊕ HC5))))
16: end if
17: if x1, x2, y1, and y2 are greater than 1 then
18: Partitioning RL into two C-shaped grid subgraphs G1 and G2

by making a vertical cut (or a horizontal cut).
19: Let HC1 and HC2 be the Hamiltonian cycles in G1 and G2,

respectively.
20: return HC(RL) = HC1 ⊕ HC2
21: end if
22: end if
23: end if

we check if G5 satisfies the forbidden conditions FC4 and FC5. This can be done in
O(1) time. If G5 does not satisfy FC4 and FC5, we compute a Hamiltonian cycle
for G1, G2, G3, and G4 in linear time, according to Theorem 2.4. A Hamiltonian
cycle for G5 is computed according to the patterns given in Figs. 9–11, which can
be done in linear time. Combining the Hamiltonian cycles of G1, G2, G3, G4, and
G5 is done in O(1) time. On the other hand, if G5 satisfies FC4 or FC5, then
either we modify the partitioning or do a new partitioning and divide RL into two
C-shaped grid subgraphs G1 and G2. This can be done in O(1) time. Finding
Hamiltonian cycles of the C-shaped subgraphs are done in linear time, according
to Theorem 2.4. Hamiltonian cycles of the other subgraphs are also computed in
linear time, as mentioned before. Combining the computed Hamiltonian cycles
of the subgraphs is done in O(1) time. Putting all together yields a linear-time
algorithm. □
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4. Conclusion and future work

In this paper, we considered the Hamiltonicity of rectangular grid graphs with an
L-shaped hole. A linear-time algorithm was presented for the problem. Although
the Hamiltonicity of grid graphs has been studied in the literature, there are few
results on Hamiltonicity of grid graphs with holes. As future work, we can study
the Hamiltonicity of grid graphs with holes of other shapes. We can also consider
grid graphs with more than one hole.
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