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HAMILTONICITY OF RECTANGULAR GRID GRAPHS
(MESHES) WITH AN L-SHAPED HOLE

MOVAHEDEH ROUHANI-MARCHOOBEH AND FATEMEH KESHAVARZ-KOHJERDI

ABSTRACT. Finding the Hamiltonian cycles in graphs is a well-known prob-
lem. Although the Hamiltonicity of grid graphs has been studied in the lit-
erature, there are few results on Hamiltonicity of grid graphs with holes. In
this paper, we study the Hamiltonicity of rectangular grid graphs (meshes)
with an L-shaped hole, and give a linear-time algorithm. The holes in meshes
correspond to the faulty nodes.

1. INTRODUCTION

The Hamiltonian cycle problem is one of the most important problems in com-
puter science and mathematics. In this problem, the goal is to find a cycle that
passes through every vertex of a graph, exactly once. There are various studies
and results regarding the Hamiltonian cycle problem in graphs [3]. A grid graph
is a subgraph of the infinite grid where the vertices have integer coordinates and
there is an edge between two vertices if their Euclidean distance is 1, see Fig. (a)
and [1)(b).

One application of the Hamiltonian cycle problem in grid graphs is in the ex-
ploration problem. Specifically, the off-line exploration problem involves a mobile
robot that needs to visit every cell in a known cellular room and return to the
starting point, while minimizing the number of cells that are visited multiple times
by the robot. This exploration problem can be translated into finding a tour in a
grid graph that visits all the vertices, where each vertex corresponds to a cell in
the environment. Thus, exploring the cellular room without revisiting any cell is
equivalent to finding a Hamiltonian cycle in the corresponding grid graph. In this
context, the environment is divided into cells, each represented by a vertex in the
grid graph, and two vertices are considered adjacent if their corresponding cells
share a common edge [10}, [13].

Itai et al. [I2] showed that the Hamiltonian cycle problem is NP-complete for
general grid graphs. However, they also proposed a linear-time algorithm for find-
ing Hamiltonian paths in rectangular grid graphs. Chen et al. [5] improved Itai’s
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FIGURE 1. (a) An infinite grid; (b) a grid graph; and (c) a super-
grid graph.

algorithm and proposed a parallel algorithm for solving the problem on mesh ar-
chitectures. Zamfirescu and Zamfirescu [25] provided sufficient conditions for a
grid graph to be Hamiltonian. A graph is called Hamiltonian if it has a Hamil-
tonian cycle. Afrati [I] presented a linear-time algorithm for finding Hamiltonian
cycles in staircase grid graphs. Umans and Lenhart [24] introduced an O(n?)-
time algorithm for finding Hamiltonian cycles in solid grid graphs with 2-factors.
They posed the question of whether a polynomial-time algorithm exists for finding
Hamiltonian cycles in grid graphs with specific types of holes. Salman [23}[22] iden-
tified classes of alphabet grid graphs that have Hamiltonian cycles. Alphabet grid
graphs are a special type of grid graphs with shapes resembling alphabet charac-
ters. Keshavarz-Kohjerdi and Bagheri [14] 16}, [I8] presented linear-time algorithms
for finding Hamiltonian paths and cycles in rectangular grid graphs with rectangu-
lar holes. Nishat and Whitesides [20] studied the reconfiguration of Hamiltonian
cycles in L-shaped grid graphs.

Islam et al. [IT] proved that finding Hamiltonian cycles is NP-complete for hexag-
onal grid graphs. Reay and Zamfirescu [2I] and Gordon et al. [6] explored the
Hamiltonian cycle problem in triangular grid graphs. Arkin et al. [2] established
complexity results for the Hamiltonicity of various classes of square, triangular, and
hexagonal grids. Hou and Lynch [7] investigated the Hamiltonian cycle problem
in grid graphs of semiregular tessellations and proved its NP-completeness. Hung
et al. [9] demonstrated that the Hamiltonian cycle and path problems in general
supergrid graphs are NP-complete. In supergrid graphs, besides of the edges in
grid graphs, we also have edges between vertices of Euclidean distance v/2, see
Fig. (c) They also showed that linear-convex supergrid graphs always contain
Hamiltonian cycles [8]. Keshavarz-Kohjerdi and Bagheri studied the Hamiltonicity
and Hamiltonian-connectivity of solid supergrid graphs [17] [19].

As mentioned, there are various results on the Hamiltonicity of solid grid graphs,
but only few results for grid graphs that have holes. In this paper, we study the
Hamiltonicity of rectangular grid graphs with an L-shaped hole, and give a linear-
time algorithm.

The structure of the paper is as follows. Section [2] provides the necessary pre-
liminaries and presents some relevant known results on grid graphs. The algorithm
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is described in Section [3] The conclusions and directions for future work are given
in Section @

2. PRELIMINARIES

In this section, we review the definitions and the results that we need throughout
the paper. These definitions and results have been previously established in [12]
14, [17].

A grid graph, denoted by G, = (V(Gy), E(Gy)), is a subgraph of the infinite
grid where the vertices have integer coordinates. In this graph, two vertices are
connected by an edge if their Euclidean distance is equal to one, as illustrated in
Fig. [J(a). Let v € V(G,), we use the notation v, to represent the z-coordinate
and v, to represent the y-coordinate of v, respectively. We say that two vertices
u and v are adjacent if there exists an edge between them, ie., (u,v) € E(Gy),
and we denote it by u ~ v. Additionally, we say that two edges e; = (v, u1) and
ea = (v, uz) are parallel if vy ~ vy and uy ~ ug. It is clear that every vertex in Gy,
such as v, is adjacent to at most four neighbouring vertices: the down neighbour
D(v) = (vg,vy — 1), the left neighbour L(v) = (vy — 1,vy,), the up neighbour
U(v) = (vg,vy + 1), and the right neighbour R(v) = (v; + 1,v,). The degree of a
vertex v is equal to the number of adjacent vertices of v. We denote the degree of
vertex v by d(v).
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FIGURE 2. (a) A grid graph with a hole; (b) definitions of the cut
vertex and the vertex cut; and (c) a solid grid graph.

Let G4 be a connected graph and V’/ be a subset of the vertex set V(G4). V'isa
vertezx cut of G if removing V' from G, denoted by G4\ V', results in a disconnected
graph. A vertex v of G, is considered a cut vertex of G if the singleton set {v}
forms a vertex cut of G,. For instance, in Fig. (b)7 the vertex z is a cut vertex
since removing it results in a disconnected graph. In Fig. [2|(b), the set {v,u} is a
vertex cut.

A solid grid graph is a grid graph in which all the internal faces are unit squares
(see Fig. (c)) A grid graph G is referred to as a rectangular grid graph, denoted
by R(m,n) (or simply GR), if its vertex set V(Gy) includes all the vertices v of the
infinite grid, where 1 < v, < m and 1 < v, < n. Fig. (a) illustrates a rectangular
grid graph R(5,4). R(m,n) is a k-rectangle if either m = k or n = k. A rectangular
grid graph Gr = R(m,n) is characterized by four corners: the top-left, the top-
right, the bottom-left, and the bottom-right corners. In this paper, we establish
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the convention that the top-left, top-right, bottom-left, and bottom-right corners
of Gr are positioned at coordinates (1,1), (m,1), (1,n), and (m,n), respectively

(see Fig. [3(a)).

(1,1) (m, 1)

b—@
—4
>—@

(1,n) (m,n) m

(a) (b) (©)

FIGURE 3. (a) An example of a rectangular grid graph; (b) defin-
ing parameters of an L-shaped grid graph; and (c) an example of
an L-shaped grid graph.

Grid graphs are bipartite graphs, which means they are two-colorable. There-
fore, we can color their vertices using two colors, say black and white. If v, + vy
is even, then the vertex v is colored white; otherwise, it is colored black. It is evi-
dent that every cycle (or path) in G, alternates between black and white vertices.
We denote the set of black and white vertices by Vg and Vi, respectively. The
number of black and white vertices in graph G4, may be different. The color that
is assigned to the majority of vertices is called the majority color, while the other
color is referred to as the minority color.
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FIGURE 4. (a) Defining parameters of a C-shaped grid graph;
(b) an example of a C-shaped grid graph; (c) defining parame-
ters of a rectangular grid graph with an L-shaped hole (denoted
by Ry), and (d) an example of Ry,.

A rectangular grid graph with a rectangular hole is a rectangular grid graph
R(m,n) from which a rectangular grid subgraph R(k,1) is removed, where k,1 > 1
and m,n > 1. When R(m,n) shares exactly two adjacent sides with R(k,!)
(as shown in Fig. [3|(b) and B|(c)), we obtain an L-shaped grid graph denoted
by L(m,n;k,l) (or simply Gr). If R(m,n) shares exactly one border side with
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R(k,1) (as depicted in Fig. [4(a) and [4](b)), we obtain a C-shaped grid graph
denoted by C(m,n;k,l;z1) (or simply G¢). It should be noted that z; > 1,
zo=m—k—x > 1,andn—12> 1 If G4 is an L-shaped or a C-shaped grid
graph, the number of vertices in G, can be calculated as mn — kl. The number
of vertices of a grid graph G, is defined as the order of G, and denoted by |G,|.
A grid graph G, has an even order if |Vg| = |Viy|. Conversely, a grid graph G,
has an odd order if ||[Vp| — |[Viy|| = 1.

A rectangular grid graph with an L-shaped hole is a rectangular grid graph
R(m,n) such that an L-shaped grid subgraph L(m’,n’;k,1) is removed from it,
where m,n > 3, m’,n’ > 1, and k,l > 1. Let Rp(m,n;m/,n’;k,l;21,y1) be a
rectangular grid graph R(m,n) with an L-shaped grid subgraph L(m/,n'; k1) as
its hole, as shown in Fig. [4](c) and [4](d). Let z = m—a21—m/ and yo = n—y; —n’.
In this paper, we assume that x1, x2, y1, and yo are greater than zero, i.e., the
hole has no common border with R(m,n). In the following, for simplicity, we use
R;, interchangeably with Ry (m,n;m’,n';k,l;21,y1). Let s and ¢t be two specified
vertices of G4. We say (G, s,t) is color-compatible if G4 is even-ordered and s
and t have different colors or Gy is odd-ordered and s and ¢ have the majority
color. It is evident that the color-compatibility of (G, s,t) is a necessary condition
for the existence of a Hamiltonian path in G, between vertices s and t [12].

The article [I2] has already provided necessary and sufficient conditions for
a rectangular grid graph to be Hamiltonian. In this paper, we present several
established results and offer redefined versions of some of them.

Lemma 2.1 ([12]). A rectangular grid graph Gg is Hamiltonian if and only if it
does not meet the conditions FC1 and FC2 as defined below:

FC1: V| # [Vl

FC2: Ggr contains a cut verter.

Lemma 2.2 ([I4]). In a rectangular grid graph Gr, we can always find a Hamil-
tonian cycle that contains all the boundary edges of the four sides N, W, S, and E
of Gr as shown in Fig. (a), except at most one side of Gr which includes bound-
ary edges every other one.

Clearly, if either FC1 or FC2 holds for any grid graph Gy, it implies that the
graph is not Hamiltonian. In any bipartite graph, the vertices of any cycle alternate
between black and white colors, resulting in [Vg| = |Vir|. It is also a well-known
fact that any Hamiltonian graph does not contain a cut vertex [4]. Therefore, in
the following, we assume that FC1 and FC2 do not hold, implying that the grid
graph satisfies the necessary conditions for being Hamiltonian.

A one-bridge is a one-rectangle subgraph of G4 in which all vertices have degree
two in Gg; a two-bridge is a two-rectangle subgraph of G, in which all vertices
have degree three in G; and a three-bridge is a three-rectangle subgraph of G in
which the vertices with y-coordinates y or y + 2 (resp. z-coordinates x or x + 2)
have degree three in G, while the other vertices have degree four in Gy. Assume
the top-left vertex of the three-rectangle has coordinate (z,y). Fig. (b) illustrates
examples of one-bridge, two-bridge, and three-bridge subgraphs.
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FIGURE 5. (a) A rectangular grid graph with four sides N, W, S,
and E; (b) examples of one, two, and three-bridges; and (c) an
example of forbidden condition FC3.

Lemma 2.3 ([I6]). A C-shaped grid graph G¢ is Hamiltonian if and only if it
does not satisfy conditions FC1-FC3, where condition FC3 is defined as follows:

FC3: Let Gy be a grid subgraph of G¢ that is connected to Go \ G1 by a two-
bridge (see Fig. B|(c)). Let two vertices s and t be the connecting vertices
of Gy to the two-bridges. And (G, s,t) is not color-compatible.

Theorem 2.4 ([12][15]). Let G4 be a rectangular or a C-shaped grid graph. The
Hamiltonian cycle of G4 can be constructed in linear time.

In [18], Keshavarz-Kohjerd and Bagheri provided necessary and sufficient con-
ditions for the existence of Hamiltonian cycles in rectangular grid graphs with
rectangular holes. In the following, we utilize their results to construct Hamilton-
ian cycles in rectangular grid graphs with an L-shaped hole. The two forbidden
conditions FC4 and FC5 are defined as follows:

FC4: Let Gy be a grid subgraph of G, that is connected to Gy \ G1 by two
one-bridges (see Fig. [6](a) and [6](b)). Assume two vertices s and ¢ are the
connecting vertices of Gy to the one-bridges. And (Gy,s,t) is not color-
compatible.

FC5: Let Gy be a grid subgraph of G, that is connected to G4\ G by exactly
one one-bridge and one three-bridge. Let w be the connecting vertex of
the one-bridge to G1, and u, v, and z be the connecting vertices of the
three-bridge to Gy, where d(z) = 4 (see Fig. [6|(c) and [6](d)). Let s,t € Gy
such that s ~ w and ¢t ~ z, and (G, s,t) is color-compatible.

Theorem 2.5 ([I8]). For any grid graph G4 to be Hamiltonian, the forbidden
conditions FC1-FC5 should not hold.

Note that the conditions FC2 and FC3 do not occur for grid graphs with holes.
Corollary 2.6. A rectangular grid graph with an L-shaped hole has a Hamiltonian
cycle if the conditions FC1, FC4, and FC5 are not satisfied.
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FIGURE 6. Examples of forbidden conditions FC4 and FC5 in Ry,.

3. THE ALGORITHM

In this section, we present an algorithm for finding a Hamiltonian cycle in a
rectangular grid graph with an L-shaped hole, denoted by Rjy. This algorithm is
based on a divide-and-conquer approach. If any of the forbidden conditions FC1,
FC4, and FC5 holds for Ry, then it is not Hamiltonian. So, in the following we
assume that these forbidden conditions do not hold for Ry. Initially, the graph
is divided into several subgraphs, and then a Hamiltonian cycle is obtained in
each subgraph. Finally, by combining the Hamiltonian cycles of the subgraphs,
a Hamiltonian cycle in the original graph is obtained. We will now explain the
details of each step of the algorithm.

To begin, we partition Ry, into at most five grid subgraphs, G = R(mi,n1),
Gy = R(mg,ng), G3 = R(m3,n3), Gy = R(m4,n4), and G5 = Ry, \ (Gl UGse U
G3UGy,), by making two vertical and two horizontal cuts, where my = r1, ny = n,
mo zm—r2—|—1, Nog =N, M3 =M — 1M1 — My, N3 = T3, Ny = M — M1 — M2,
ng =n—r4+ 1, and r; to r4 are defined as follows:

z1—1 ifz; =1 (mod 2),
T =
! r1 — 2 otherwise;

{9:1+m’+2 ifzy+m' +1=m (mod 2),
T2

z1 +m' +3 otherwise;

y1—1 ify; =1 (mod 2),
Ta =
s y1 — 2 otherwise;

y+n' +2 ifyr+n' +1=n (mod 2),
Tah =
y1 +n’ +3 otherwise.

Here, ry represents the right-most column of Gy, r9 the left-most column of Go,
r3 the bottom-most row of G3, and r4 the top-most row of G4. Note that if zq,
T2, Y1, and yo in Ry, are 1 or 2, then Gy, G2, G3, and G4 are empty, respectively.
See Fig. [7| for a visual illustration. Notice that G5 = Rp(m — my — mg,n — ng —
ng;m',n';k,l;x1 — my,y1 — n3), ms = my, and mg > 2. A simple verification
indicates that mq, ms, n3, and n4 are even. Therefore for each subgraph G;, where

Rev. Un. Mat. Argentina, Vol. 68, No. 2 (2025)



618 M. ROUHANI-MARCHOOBEH AND F. KESHAVARZ-KOHJERDI

Gy ' G3 ) G2 Gi G3 G3
O @€ O €¢,0 @€ O @ O @10 @ O @10 @€ O @€ O @ O O @€ O @ O @O
] 1 ]
® O @ O1r® O @€ O @ O1® O ® O1® O @€ O @ O @ ® O @ O @ O @
|mmmmesssan== l e i
O @ O €¢,0 @€ O @ O @10 @ O @10 @€ O @€ O @ O O @€ O @ O @O
] 1 ]
® O @ Or10 O ® Or1® O ® 010 O e O e [ ] O e O e
] G5 ' ] G+ G5
O @@ O @10 ® O @10 @ O @10 ® O @ O o ® O @ O
] 1 ]
® O @ Or10 o1 O ® 010 o e [ ] o e
] 1 ]
O @@ O @10 @10 @ O @10 ® O o ® O
] 1 ]
® O @ O1r® O @€ O @ O10 O ® O1® O @€ O @ O @ ® O @€ O @ O O
jmmemmmmm === 1 mememssssssmssssms=s  memsssssssss====
O @€ O €¢:.0 @€ O @ @10 @ O @10 @ O ® O O e O e ® O
] 1 ]
® O @ O1r® O @@ O o1 O ® O1® O @ O o e ® O @ O o e
' Gy ' ' Gy Gy

Ficure 7. Dividing Ry into several subgraphs.

1 <4 <5, we have |Vp(G;)| = |Vw(G;)|. Since |Vg(G))| = |V (G:)], 1 < i < 4,
and n, mg, my > 1, based on Lemma it follows that G to G4 have Hamiltonian
cycles. Furthermore, according to the algorithm presented in [5], a Hamiltonian
cycle can be constructed in G; to Gy.

If G5 does not satisfy the forbidden conditions FC4 and FC5, then its Hamilton-
ian cycle is constructed following the patterns given in Figs. Which pattern
is used depends on the dimensions of G5. In the following, omitting similar cases,
we consider only the following distinct cases:

(1) Both m and n are even and [(k is even) or (both k and [ are odd)].
(2) Both m and n are odd and [(k is even) or (both k and [ are odd)].
(3) m is odd and n is even.

Then Hamiltonian cycles in the subgraphs are combined by using parallel edges.
Let G; and G5 be two subgraphs of Ry, and HC; (resp. HC2) be a Hamiltonian
cycle of Gy (resp. G2). Assume that e; = (v1,u1) € HCy and €} = (va,u2) € HCo
are two parallel edges. We can merge HC; and HC5 into one cycle, as a Hamiltonian
cycle of G1UG32, by removing e; and €/, and adding two edges (v1,v2) and (uq, us),
see Fig. [8l This is called the merge operation, and denoted by &. In the following
lemma, we demonstrate how Hamiltonian cycles in the subgraphs G; to G5 can be
combined.

vl Vg

Uy U

(a)

FIGURE 8. The merge operation.

Rev. Un. Mat. Argentina, Vol. 68, No. 2 (2025)



HAMILTONICITY OF GRID GRAPHS WITH AN L-SHAPED HOLE 619

ey [ | PR

FIGURE 9. A Hamiltonian cycle in G5, in the case where x; = 1
and yo = 1, in G5.

F1GURE 10. A Hamiltonian cycle in G35, in the case where ;1 =1
and yo = 2, in G5.

FIGURE 11. A Hamiltonian cycle in G5, in the case where 1 = 2,
in G5.

Lemma 3.1. Let G1, G2, G3, G4, and G5 be a partition of Ry, as previously
defined. Let HCy, HCo, HCs, and HCy represent the Hamiltonian cycles in Gy,
G, Gs, and Gy, respectively. If Gy does not satisfy the conditions FC4 and FC5,
then the Hamiltonian cycle of Ry, i.e., HC(RL), can be constructed by merging
HCy, HCs, HCs, HCy, and the Hamiltonian cycle in Gs (HCs).
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FI1GURE 12. Merging ’HCl, HCQ, HCg, HC4, and HCs.

Proof. Let v1 = (r1 + 1,14 — 1), ug = (r1 + 1,rqg — 2), va = (r2 — 1,73 + 1),
U = (7‘2—171"34—2), V3 = (T1—|—1,7‘3—|—1), usz = (T1—|—2,7‘3—|—1), Vg4 = (TQ—I,’I”4—1),
and ug = (rg — 2,74 — 1). Since d(v1) = d(v2) = d(vs) = d(v4) = 2 in G5, the
edges e; = (v1,u1), ea = (va,u2), es = (vs,u3), and eg = (vg,uyq) are included
in any Hamiltonian cycle HCs of G5 (see Fig. [12](a)). Let €], €5, €5, and €} be
the edges of G1, G2, G3, and G4 that are parallel to the edges ey, es, ez, and ey,
respectively. According to Lemma [2.2] it is always possible to make Hamiltonian
cycles HCy1, HC2, HCs, and HC,4 such that it includes the edges €}, €5, e}, and
e}, respectively. If the subgraphs G, Ga, G3, and G4 are not empty, then we can
merge their Hamiltonian cycles by the Hamiltonian cycle HCs of G5, using the
parallel edges e; and €}, 1 < < 4 (see Fig. [12(b)). O

Now, consider the case where G5 satisfies FC4 or FC5.

Lemma 3.2. If G5 satisfies FC4 or FC5, then one of the following conditions
occurs for Ryp:

Cl: n is even, m and x1 are odd, and either
(a) 2 is odd, ya is even, or
(b) k=1 and z2, I, and y, are even.
C2: m, n, and ys are even, l is odd, and either
(a) k, x2, and y1 are odd and x; is even, or
(b) k, xa, and y; are even, xy is odd, and | = 1.

Proof. We have assumed that FC4 and FC5 do not hold for the given grid graph
Ryp. After dividing Ry, into Gy to G5, in G5, the variables x1, zo, y1, and yo take
values of either 1 or 2. If FC4 holds for G5, then there are two possible cases:
Case 1. In Ry, x1, x2, and m are odd, and ys is even. This case corresponds to
Cl(a).
Case 2. In Ry, k, I, y1, and x5 are odd. This case corresponds to C2(a).
If FC5 holds for G5, then x5 is even, z; is odd, and there are two possible cases:
Case 1. In Ry, k =1, l is even, m is odd, and y3 + (n’ — ) is even. This case
corresponds to C1(b).
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Case 2. In Ry, l =1, k is even, x1 is odd, y; and x; + (m’ — k) are even. This
case corresponds to C2(b). O

In the following, we explain how to construct a Hamiltonian cycle in Ry, in the
case where one of the conditions C1 or C2 occurs. We consider two cases.
CaseI: ;1 = 1, 29 = 1, y1 = 1, or yo» = 1. This case is investigated in
Lemma 3.3
Case II: z; > 1, 22 > 1, y1 > 1, and y» > 1. This case is investigated in
Lemma 3.4

Lemma 3.3. Assume that Ry satisfies condition C1 or C2, and Case I holds. If
Ry, does not satisfy conditions FC4 and FC5, then Ry has a Hamiltonian cycle.

Proof. In this case, by modifying the values of ry, ro, or r3, we transform the
subgraph G5 into a state that has a Hamiltonian cycle.

Let C1l(a) hold; then z; and zo are odd. Here, we have x; > 5 or 2o > 5.
Because if both z; and z5 are less than 5, then either condition FC4 or FC5 is
satisfied for Ry. If 1 > 5, we modify ry as ry = x1 —2. If z9 > 5 and z; = 1, then
if (I >1)or (I=1andy is odd), we modify 73 as ro = z1 +m’ + 3. Otherwise,
we modify r1 and r3 as r1 = 21 — 2 and r3 = y; — 1, respectively. Let C1(b) hold,;
then x5 is even and xo > 2. Because if x5 = 2, then either condition FC4 or FC5
is satisfied for Ry. In this case, we modify 7o as 7o = x1 +m’ + 2. Since n is even,
[Ve(Gi)| = |V (G;)|, where i = 1 or 2. Also, since ng is even or m — my — mg is
even, [Vp(Gs)| = [Viw (G3)|.

Let C2(a) hold; then z; is even, and y; and zo are odd. We have zo > 5 or
y1 = 5. Because if both x5 and y; are less than 5, then either condition FC4 or
FC5 is satisfied for Ry. If x5 > 5, then we modify 7 as ro = z1+m/ +3. If 2o = 1
and y; > 5, then we modify r3 as r3 = y; — 2. Let C2(b) hold; then z; is odd,
and y1,y2, and xo are even. Here, y; > 2 and z; = 1. Because if y; = 2, then the
condition FC5 is satisfied for Ry. In this case, we modify r3 as r3 = y; — 1. Since
n and m are even, |Vg(G;)| = |[Viw (G;)|, where i = 2 or 3.

A simple check reveals that G5 has a Hamiltonian cycle, and its Hamiltonian
cycle is one of the patterns given in Figs. Combining the Hamiltonian cycle
HC5 of G5 with the Hamiltonian cycles HCy, HC2, HC3, and HC4 of G1, Ga, G3,
and Gy, respectively, are done according to Lemma [3.1] O

Lemma 3.4. Assume that Ry satisfies condition C1 or C2, and Case II holds. If
Ry, does not satisfy conditions FC4 and FC5, then Ry has a Hamiltonian cycle.

Proof. Based on the value of y3, we consider the following two cases.

Case 1. yo is even. We divide Ry into two connected components, G =
C(n,xz;n',m' — k;y1) and Go = C(n,m — z;n’ — I, k;y; + 1), by a vertical cut
at © +m/ — k, as illustrated in Fig. [[3|(a). Consider the subgraph G;. First, let
y1 is even. Since n, yo, and y; are even, we observe that |Vp(G1)| = |Viw (G1)|-
Now, let 7 is odd, then k and [ are odd. A simple check shows that m’ is odd and
m’ — k is even. Since n and m’ — k are even, we have |Vp(G1)| = |Viw (G1)]. Since
|[Ve(RL)| = |Vw(RL)|, we can deduce that |Vp(G2)| = [Viw(G2)|.- So, FC1 does
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not hold. We assumed that Case II holds, so FC2 does not hold. Since [(z; > 2)
or (x; =2 and y9 is even)] and [(z2 > 2) or (x2 = 2 and y9 is even)], the condition
F(C3 is not met for G; and G5. Based on Lemma [2.3] it can be concluded that both
G1 and G2 have a Hamiltonian cycle. According to the algorithm described in [I5],
a Hamiltonian cycle is constructed in G; and Gs. Finally, the Hamiltonian cycles
are combined using two parallel edges, e; = (v,u1) and €] = (vq, us), resulting
in a Hamiltonian cycle in Ry, (see Fig. [13|(b)). Let vy = (z,n), u1 = (z,n — 1),
vy = (z+1,n), and ug = (x +1,n — 1). Since d(v1) =2 (in G1) and d(vz2) = 2 (in
G2), the edges e; = (v1,u1) and €] = (ve,uz) are in any Hamiltonian cycle of Gy
and G, respectively.

G Ga Gy
O e0 el0o e 0 @0 O ®@ 0 e 0 e 0 @O0
@0 eeo0le0 00 e @O0 0 @O0 @O0 e
O e o0 '0oeo0 eo0 op,oo o e o
eoel leceoce Letoe L. eoe .
o e o : o e o v1 oSletio .OG
ooom:wooo eo0eeo0eo0 e o0 e ?
ooocl:ic,oooo O ®@ 0 e 0 e 0 @O0
e o0 e &' e o0 e @O0 0 @O0 @O0 e

FI1GURE 13. Combining Hamiltonian cycles in G; and Gs.

Case 2. ys is odd. In this case, only condition C1(b) occurs. Clearly, y; and [ are
even. We divide Ry, into two connected components, Gy = C(m,y;m' — k,l; 1)
and Gy = C(m,n—y;m',n’ —1;x1), by a horizontal cut at y = y; +1, as illustrated
in Fig. [I3|(c). Since y; and y are even, we conclude that [Vz(G1)| = [Viv (G1)|.
Since |Vp(RL)| = |[Vw(RL)|, we can deduce that |Vp(G2)| = |Viv (G2)|. So, FC1
does not hold. We assumed that Case II holds, so FC2 does not hold. Since y
and n — y are even, the condition FC3 is not met for G; and G3. A Hamiltonian
cycle in Ry, can be constructed similarly to Case 1. Here, let v1 = (1,y + 1),
up = (2,y+ 1), v2 = (1,y), and uy = (2,y). Since d(v1) =2 (in G1) and d(ve) = 2
(in G3), edges e; = (v1,uy1) and €} = (ve,uz) are in any Hamiltonian cycle of Gy
and G4, respectively. O

Theorem 3.5. A rectangular grid graph R(m,n) with an L-shaped hole L(m/,n’;
k,l) is Hamiltonian if and only if none of the forbidden conditions FC1, FC4, and
FC5 hold.

Algorithm [I| shows the pseudo code of the algorithm. In the pseudo code, by @
we mean the merge operation.

Theorem 3.6. A Hamiltonian cycle for a rectangular grid graph with an L-shaped
hole can be constructed in linear time.

Proof. To compute a Hamiltonian cycle for Ry, first we divide Ry, into at most five
subgraphs G1, Ga, G3, G4, and G5. This partitioning is done in O(1) time. Then
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Algorithm 1 HamCycle (Ry,)

1: Input: a rectangular grid graph R(m,n) with an L-shaped hole L(m/,n'; k,1)

2: Qutput: a Hamiltonian cycle of Ry,

3: if any of the conditions FC1, FC4, and FC5 holds for R;, then

4:  report Ry is not Hamiltonian, and exit.

5. else

6:  Partitioning R into at most five grid subgraphs G to Gj

by making two vertical cuts and two horizontal cuts.

if none of the conditions FC4 or FC5 are satisfied for G5 then

8: Let HC1, HCa, HC3, HC4, and HCs be the Hamiltonian cycles
in G1, Ga, G3, G4, and G5, respectively.

9: return HC(RL) = (7—[6’1 D (HCQ D (HCg (5) (7‘[64 D HCE,))))

10: end if

11:  if any of the conditions FC4 or FC5 holds for G5 then

1

12: ifz;=1,20=1,y1 =1, or y =1 then

13: Modify the partitioning of R;, According to Lemma [3.3]

14: Let HCy, HCo, HC3, HCy4, and HC5 be the Hamiltonian cycles
in Gy, G2, G3, G4, and G&, respectively.

15: return HC(RL) = (’H01 D (HCQ D (7‘[63 D (HC4 D HC5))))

16: end if

17: if z1, z2, y1, and yo are greater than 1 then

18: Partitioning Ry into two C-shaped grid subgraphs G; and Gs
by making a vertical cut (or a horizontal cut).

19: Let HC; and HCy be the Hamiltonian cycles in G and Go,
respectively.

20: return HC(RL) =HC1 ® HCo

21: end if

22: end if

23: end if

we check if G5 satisfies the forbidden conditions FC4 and FC5. This can be done in
O(1) time. If G5 does not satisfy FC4 and FC5, we compute a Hamiltonian cycle
for G1, Ga, G3, and G4 in linear time, according to Theorem A Hamiltonian
cycle for G5 is computed according to the patterns given in Figs. which can
be done in linear time. Combining the Hamiltonian cycles of G1, Ga, G3, G4, and
G5 is done in O(1) time. On the other hand, if G5 satisfies FC4 or FC5, then
either we modify the partitioning or do a new partitioning and divide Ry, into two
C-shaped grid subgraphs G; and Ga. This can be done in O(1) time. Finding
Hamiltonian cycles of the C-shaped subgraphs are done in linear time, according
to Theorem Hamiltonian cycles of the other subgraphs are also computed in
linear time, as mentioned before. Combining the computed Hamiltonian cycles
of the subgraphs is done in O(1) time. Putting all together yields a linear-time
algorithm. O
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4. CONCLUSION AND FUTURE WORK

In this paper, we considered the Hamiltonicity of rectangular grid graphs with an
L-shaped hole. A linear-time algorithm was presented for the problem. Although
the Hamiltonicity of grid graphs has been studied in the literature, there are few
results on Hamiltonicity of grid graphs with holes. As future work, we can study
the Hamiltonicity of grid graphs with holes of other shapes. We can also consider
grid graphs with more than one hole.
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