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CONDITIONAL NON-LATTICE INTEGRATION, PRICING,
AND SUPERHEDGING

CHRISTIAN BENDER, SEBASTIAN E. FERRANDO, AND ALFREDO L. GONZALEZ

Abstract. Motivated by financial considerations, we develop a non-classical
integration theory that is not necessarily associated with a measure. The base
space consists of stock price trajectories and embodies a natural no-arbitrage
condition. Conditional integrals are introduced, representing the investment
required to hedge an option payoff when entering the market at any later time.
Here, the investment may depend on the stock price history, and hedging takes
place almost everywhere and as a limit over an increasing number of portfolios.
In our setting, the space of elementary integrands fails to satisfy the lattice
property and the notion of null sets is financially motivated and not measure-
theoretic. Therefore, option prices arise from conditional non-lattice integrals
rather than expectations, with no need to impose measurability assumptions.

1. Introduction

The paper develops a non-classical theory of integration in a financial trading
context. The abstract non-lattice integration theory, that we rely on, was developed
first in [17] and then refined in [16] (henceforth referred to as the Leinert–König
theory). We extend the Leinert–König framework to a conditional version by taking
advantage of a natural conditioning structure present in our trading setting.

The abstract Leinert–König theory is here employed to set up a trajectorial
framework for trading in a financial market in infinite discrete time. To gain per-
spective, our approach is located between the model-free arbitrage and superhedg-
ing theory in finite discrete time studied, e.g., by [1, 7, 9, 10, 8] and the pathwise
superhedging approach to mathematical finance in continuous time initiated by
Vovk [22] and further developed, e.g., in [3, 2, 4, 18, 23]. The infinite discrete time
framework also makes our approach closely related to the game-theoretic approach
to probability of Shafer, Vovk, and co-authors which is detailed in [19].

The Leinert–König theory mimics, and also generalizes, the classical (measure-
based) Lebesgue–Daniell theory of integration in the sense that the integral is first
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defined for a class of elementary functions and then extended to a larger class
of integrands by continuity arguments. However, it dispenses with the property
that the (abstract) class of elementary functions forms a vector lattice by only
requiring the vector space property. For this reason, their constructions can lead
to non-classical integrals, i.e., to integrals which are not associated to measures.
The Leinert–König theory relies on two operators, which we call norm operator
and outer integral in the following discussion (their non-conditional versions are
denoted by I and σ, respectively). The norm operator can be considered as the
analogue of the L1-seminorm of the classical theory. It is countable-subadditive
and can be used to generalize the crucial continuity-from-below property of the
elementary integral, on which the Lebesgue–Daniell integration relies. This gener-
alization of continuity-from-below is Leinert’s continuity property in the non-lattice
framework, which was later strengthened by König, cf. Definition 2.7 below. Null
functions and null sets are defined in terms of the norm operator. On the other
hand, the outer integral σ is subadditive but not necessarily countable-subadditive,
and it is an extension of the elementary integral. The corresponding space of inte-
grable functions is the largest subspace of functions on which it acts linearly. The
Leinert–König integral satisfies, for example, the Beppo-Levi theorem for series
of non-negative functions (under Leinert’s condition) and the monotone conver-
gence theorem for increasing sequences of non-negative functions (under König’s
condition). The validity of Lebesgue’s dominated convergence theorem requires
additional assumptions connected to the lattice property. A crucial difference with
the classical theory is that the non-lattice integral need not coincide, in the gen-
eral case, with the norm operator on the cone of non-negative integrable functions.
Thus, both operators (norm operator and outer integral) play different roles.

To apply the Leinert–König theory in our financial context, we follow [13] and
start with a set S of trajectories which models the possible future price evolution of
a risky stock (discounted in terms of a tradable numeraire). The payoffs of simple
portfolios (i.e., of finite linear combinations of one-period buy-and-hold strategies)
form the vector space of elementary functions on S and the corresponding hedging
cost defines the elementary integral. The need to dispense with the lattice prop-
erty in this trading context is due to the fact that the space of portfolio payoffs
is not, in the general case, a vector lattice. Note that each simple portfolio has
a finite investment horizon. In order to trade in infinite time, the norm operator
and the outer integral apply the idealization of trading with a countable super-
position of simple portfolios (whose associated sequence of trading horizons may
be unbounded). The norm operator requires that the payoff of each of the sim-
ple portfolios is non-negative for every trajectory. Even though the operator I is
derived from the framework of the Leinert–König theory, it can be considered as
the natural analogue of Vovk’s outer measure [22] in the infinite discrete-time case.
The definition of the operator σ relaxes the positivity requirement on the payoff
of one the simple portfolios in the superposition and represents the minimal su-
perhedging cost under the idealization of trading with countably many portfolios.
Note that the use of countably many portfolios is crucial to detect several subsets
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of trajectories, on which rather obvious arbitrage opportunities exist, as null sets
(as illustrated in the examples of Subsection 2.4).

In this paper, we study a conditional version of the superhedging outer integral σ,
when the investor enters the market at time j ∈ N and the past stock prices
are represented by the initial segment (S0, . . . , Sj) of some trajectory. We will
introduce a notion of conditional integrability, which depends on the null sets of
the unconditional norm operator and means that a function f is conditionally
integrable if and only if seller and buyer agree on a unique price for an option with
payoff function f (when contracted at time j) in almost every scenario of the past
stock prices. We will illustrate by some examples that, in general, this notion of
integrability can be satisfied even if there is no perfect hedge (up to null sets and
under the idealization of trading with countably many portfolios). However, under
a suitable conditional formulation of König’s stronger continuity condition, we can
prove the classical characterization (see, e.g., [15]) that an option can be perfectly
hedged if and only if it has a uniquely determined price (which then is the hedging
cost). Note that the conditional superhedging outer integral naturally gives rise to
the notion of a trajectorial supermartingale which is studied in [5].

We stress that our trajectorial setting works under very mild assumptions. It
provides a meaningful superhedging outer integral if Leinert’s continuity from be-
low condition holds. The latter property can be viewed as a very weak no-arbitrage
assumption. If it fails, one can then construct for every initial wealth V < 0 an
idealized trading strategy (consisting of a superposition of countably many simple
portfolios as described above) which yields a terminal wealth of at least one unit of
currency on every trajectory, see the discussion right before Definition 2.8. Lein-
ert’s continuity condition does not require topological properties on the trajectory
set (which are usually required in continuous time pathwise finance) or the exis-
tence of a martingale measure for the stock price model (which plays a central role
in the finite discrete-time model-free finance literature). We refer to Section 2.5
for a detailed comparison to the literature, but mention now that the way we deal
with null sets is an important difference to most of the discrete-time pathwise fi-
nance literature: While the quasi-sure approach of [7], and similarly the pathwise
approach of [10, 8], fixes a family of probability measures and considers a set to be
negligible if it has zero probability under each of these measures, the trajectorial
approach avoids any reference to a priori given probability measures for determin-
ing null sets. To be more specific, Example 2.18 in Subsection 2.4 illustrates how
the superhedging outer integral acts on a trajectory space without a martingale
measure via a combination of detecting null sets and of passing to the topologi-
cal closure on the remaining subset of trajectories in order to come up with an
arbitrage-free model. This flexibility makes the trajectory set based superhedging
outer integral attractive. In particular, one can apply it to trajectory sets which
are constructed using historical data by means of combinatorial recombinations
and worst case constraints (as in [14]). These data-based constructions can be at
odds with no-arbitrage modeling constraints. Removing a priori such arbitrage
opportunities, e.g., via the arbitrage aggregator of [9, 8], may cause fundamental
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problems as the whole model may collapse into the empty set (see the discussion in
Section 2.5 below). In such situations, the trajectorial superhedging outer integral
can still deliver relevant price bounds. Thus, in combination with the algorithm
proposed in [11], the trajectorial approach could lead to an algorithmic procedure
for computing option price intervals from historical data.

The paper is organized as follows: Section 2 introduces the trajectorial set-
ting (Subsections 2.1–2.2), discusses the main result on the characterization of
conditionally integrable functions as payoff functions of replicable options (Subsec-
tion 2.3), and illustrates our framework through several examples (Subsection 2.4).
Moreover, we discuss the relation and the differences to the literature on model-
free finance in discrete and continuous time (Subsection 2.5). Section 3 provides
sufficient criteria for appropriate conditional versions of the continuity conditions
of Leinert and König. While Leinert’s condition is a minimum requirement for the
outer integral to extend the elementary integral, König’s stronger conditions will be
required for some of our results. Section 4 is devoted to a detailed study of the space
of conditionally integrable functions. Next to the main result on the characteri-
zation of conditionally integrable functions, it contains versions of the Beppo-Levi
theorem and the monotone convergence theorem for the conditional superhedging
integral as well as a norm completion characterization of the space of integrable
functions. Appendices A–E provide auxiliary material related to the proofs of the
main results, while some additional examples are presented in Appendix F.

2. Discussion of the setting and of the main result

2.1. Trajectorial setting and null sets. We first introduce the basic components
of a trajectorial market model in infinite discrete time (with time index i ∈ N0) and
explain the relation to the theory of non-lattice integration developed in [17, 16].

The market consists of a risky stock whose possible price fluctuations are mod-
eled (in discounted units) by a trajectory set. Additionally, the investor can trade
into a money market account with zero interest rate.

Definition 2.1 (Trajectory set). Given a real number s0, a trajectory set, denoted
by S = S(s0), is a subset of

S∞(s0) = {S = (Si)i∈N0 : Si ∈ R, S0 = s0}.

We make fundamental use of the following conditional spaces; for S ∈ S and j ∈ N0
let

S(S,j) ≡ {S̃ ∈ S : S̃i = Si, 0 ≤ i ≤ j}.

The conditional space S(S,j) contains the possible future price evolution of the
stock, provided the investor enters the market at time j and the past stock prices
are given by (S0, . . . , Sj). For simplicity, sometimes we will refer to the space S(S,j)
through a pair (S, j) with S ∈ S and j ≥ 0, which will be called a node.

Remark 2.2. In practice, the coordinates Si are multidimensional in order to
allow for multiple sources of uncertainty ([14]); for simplicity, we restrict to Si ∈ R.
One can also extend the theory to allow for several traded assets Sk

i (as in [12]).
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We next describe the set of portfolio positions available to the investor, when
entering the market at time j in a given stock price scenario (S, j).

Definition 2.3. For any fixed S ∈ S and j ≥ 0, H(S,j) will be a set of sequences of
functions H = (Hi)i≥j , where Hi : S(S,j) → R are non-anticipative in the following
sense: for all S̃, Ŝ ∈ S(S,j) such that S̃k = Ŝk for j ≤ k ≤ i, then Hi(S̃) = Hi(Ŝ)
(i.e., Hi(S̃) = Hi(S̃0, . . . , S̃i)).

H ∈ H(S,j) may be referred to as a conditional portfolio. We think of Hi(S̃) as
the number of shares of the risky stock held by the investor between time i and
time i+ 1. Our setting admits certain portfolio restrictions, which are summarized
in the following conditions:

(H.1) The sets H(S,j) are assumed to be vector spaces αH(S,j) + H(S,j) ⊆ H(S,j)
for all α ∈ R.

(H.2) The portfolios Hc = (Hc
i )i≥j where Hc

i are constant valued −1, 0 or 1, on
S(S,j), are assumed to belong to H(S,j). So the null portfolio (0 = (H0

i ≡
0)i≥j) belongs to H(S,j).

(H.3) If (Hi)i≥j ∈ H(S,j) and k ≥ j, then ((Hi)|S(S,k))i≥k ∈ H(S,k).
(H.4) Let (Hi)i≥j ∈ H(S,j). If Gi ≡ Hi for j ≤ i ≤ k and Gi = 0 for i > k, then

G ∈ H(S,j) as well.
Conditions (H.1)–(H.4) are assumed for the rest of this paper without further

notice.

Remark 2.4. As a special case of a set of portfolios that fulfill (H.1)–(H.4) one
can take all portfolios (Hi)i≥j of the form Hi(Ŝ) = hi(S0, . . . , Sj , Ŝj+1, . . . , Ŝi) for
every Ŝ ∈ S(S,j), where hi : Ri+1 → R are Ai/B-measurable with respect to any
fixed σ-field Ai of Ri+1 and the Borel σ-field B of R.

For a node (S, j), H ∈ H(S,j), V ∈ R and n ≥ j we define the portfolio payoff
ΠV,H

j,n : S(S,j) → R as

ΠV,H
j,n (S̃) ≡ V +

n−1∑
i=j

Hi(S̃) ∆iS̃, S̃ ∈ S(S,j), where ∆iS̃ = S̃i+1 − S̃i, i ≥ j.

ΠV,H
j,n is the payoff of the portfolio H with initial investment V and investment

horizon n when the past of the stock price up to time j is described by the node
(S, j). Note that the definition of ΠV,H reflects the usual self-financing condition,
see, e.g. [15]. Functions f : S(S,j) → R, which can be represented as a portfolio
payoff, will be called elementary functions, and we write

E(S,j) = {f = ΠV,H
j,n : H ∈ H(S,j), V ∈ R and n ∈ N}

for the set of those elementary functions. If f = ΠV,H
j,n ∈ E(S,j), we say that the

simple portfolio (V, n,H) is a perfect hedge for f . The hedging price is the initial
endowment V to set up this hedge, leading to the operator

I(S,j) : E(S,j) → R, f 7→ V if f = ΠV,H
j,n ∈ E(S,j). (2.1)
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Note that the operator I(S,j) is a well-defined, linear, and isotone operator for
every node (S, j) if and only if every node is 0-neutral in the sense of the following
definition (see Appendix A for the details).

Definition 2.5. Given a trajectory space S and a node (S, j):
• (S, j) is called a 0-neutral node if

sup
S̃∈S(S,j)

(S̃j+1 − Sj) ≥ 0 and inf
S̃∈S(S,j)

(S̃j+1 − Sj) ≤ 0.

• (S, j) is called an up-down node if

sup
S̃∈S(S,j)

(S̃j+1 − Sj) > 0 and inf
S̃∈S(S,j)

(S̃j+1 − Sj) < 0. (2.2)

• (S, j) is called a flat node if

sup
S̃∈S(S,j)

(S̃j+1 − Sj) = 0 = inf
S̃∈S(S,j)

(S̃j+1 − Sj). (2.3)

• (S, j) is called an arbitrage-free node if (2.2) or (2.3) hold, otherwise it is
called an arbitrage node. An arbitrage node (S, j) is said to be of type I
if there exists Ŝ ∈ S(S,j) such that Ŝj+1 = Sj , otherwise it is said to be of
type II.

We will, thus, assume from now on that every node (S, j) is zero neutral (but see
also Remark 2.11). Then, each operator I(S,j) is an elementary integral in the sense
of the non-lattice integration developed in [16, 17]. Since the operator depends on
the past through the node (S, j), we will refer to I(S,j) as the elementary hedging
integral conditionally on (S, j).

The hedging price interpretation in (2.1) requires that f(S̃) = ΠV,H
j,n (S̃) for every

S̃ ∈ S(S,j). This is in contrast to the classical setting where the hedge only needs
to hold outside a null set with respect to a reference probability measure P. How
null events are introduced in model-free settings represents a crucial theoretic con-
struction with substantial implications. We explain, in Section 2.5, the differences
between our approach and the literature (e.g. [8] in finite discrete time or [22]
in continuous time). Our framework relies on the general constructions of the
Leinert–König theory to define null sets. Denote by E+

(S,j) the cone of non-negative
functions in E(S,j) and consider

I(S,j)f ≡ inf
{ ∞∑

m=1
I(S,j)fm : fm ∈ E+

(S,j), f(S̃) ≤
∞∑

m=1
fm(S̃) ∀S̃ ∈ S(S,j)

}

= inf
{ ∞∑

m=1
V m : ΠV m,Hm

j,nm
∈ E+

(S,j), f(S̃) ≤
∞∑

m=1
ΠV m,Hm

j,nm
(S̃) ∀S̃ ∈ S(S,j)

}
,

(2.4)

which is defined on all functions f : S(S,j) → [0,∞]. I(S,j)f can be interpreted
as the minimal superhedging price when trading takes place with the idealization
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of a superposition of countably many simple portfolios with non-negative portfolio
payoff. The non-negativity assumption ensures that Ī(S,j) is countable-subadditive.

Let Q denote the set of all functions from S to [−∞,∞] and P ⊂ Q denotes the
set of non-negative functions (taking values in [0,∞]). The following conventions
are in effect: 0 · ∞ = 0, ∞ + (−∞) = ∞, u− v ≡ u+ (−v) ∀ u, v ∈ [−∞,∞], and
inf ∅ = ∞ (following [16]).

For f ∈ Q, we define the conditional norm operator
∥f∥j(S) := Ī(S,j)(|f|(S,j)|), S ∈ S,

where f|(S,j) denotes the restriction of f on the node (S, j).

Definition 2.6. Fix a node (S, j). A function f ∈ Q is said to be a null function
conditionally on (S, j) if ∥f∥j(S) = 0, and a subset E ⊂ S is a null set conditionally
on (S, j) if ∥1E∥j(S) = 0, i.e., if 1E is a null function conditionally on (S, j). We
say that a property holds a.e. on S(S,j) if the subset of S on which the property
does not hold is a null set conditionally on (S, j).

Note that S(S,0) = S for every S ∈ S. Hence, ∥ · ∥0(S) does not depend on S,
and we write ∥ · ∥ in place of ∥ · ∥0(S). (Unconditional) null functions f and null
sets E are defined with respect to ∥·∥, i.e., via the identities ∥f∥ = 0 and ∥1E∥ = 0,
respectively. We will sometimes call these null sets and null functions global ones.
We say that a property holds a.e. if it is valid outside a global null set. Note
that, although the above notion of null sets is adapted from the abstract theory of
[17, 16], this construction is completely analogous to the construction of null sets in
continuous-time model-free finance via Vovk’s outer measure [22]. We stress that
by the countable-subadditivity of the I operator, countable unions of null sets are
again null sets (analogously for their conditional versions).

2.2. The conditional superhedging outer integrals. The next step is to ex-
tend the conditional hedging integrals I(S,j) to account for the following issues:

(1) Ensure that hedging only has to take place outside a conditional null set.
(2) Apply some idealization which ensures that trading can take place up to

infinite time (noting that the elementary functions are based on trading
with finite investment horizon.)

This will lead to our notion of a conditional superhedging outer integral.
Recall that classical integral constructions can be based on continuous exten-

sions of elementary integrals with respect to some (semi-)norm. However, the
space of elementary functions E(S,j) does not satisfy the lattice property (except
for some simple special cases such as a binomial tree structure of the trajectory
set). Therefore, care must be taken when formulating the continuity requirement
of the elementary integral in a proper way. Leinert [17] and König [16] show how to
build a non-lattice integration theory based on the following continuity properties.

Definition 2.7.
Leinert Condition: I(S,j)(f) ≤ Ī(S,j)(f+) ∀f ∈ E(S,j).

König Condition (K(S,j)): I(S,j)(f) + Ī(S,j)(f−) = Ī(S,j)(f+) ∀f ∈ E(S,j).
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Clearly, König’s condition is stronger than Leinert’s condition, which in turn
implies (see Proposition 3.4) the classical continuity requirement

|I(S,j)(f)| ≤ Ī(S,j)(|f |), f ∈ E(S,j).

Following the same idealization of a superposition of countably many simple
portfolios as in the definition of Ī(S,j), but relaxing the positivity assumption on
the portfolio payoff of one of them, the superhedging outer integral conditional on
(S, j) is defined to be

σ(S,j)f ≡ inf
{ ∞∑

m=0
I(S,j)fm : f0 ∈ E(S,j), fm ∈ E+

(S,j) (m ≥ 1),

f(S̃) ≤
∞∑

m=0
fm(S̃) ∀S̃ ∈ S(S,j)

}

= inf
{ ∞∑

m=0
V m : ΠV 0,H0

j,n0
∈ E(S,j), ΠV m,Hm

j,nm
∈ E+

(S,j) (m ≥ 1),

f(S̃) ≤
∞∑

m=1
ΠV m,Hm

j,nm
(S̃) ∀S̃ ∈ S(S,j)

}
.

Clearly, σ(S,j)f ≤ Ij(f) for any f ∈ E(S,j), and we think of σ(S,j)f as the super-
hedging price for a financial derivative with payoff function f when trading takes
place with the idealization of a countable superposition of simple portfolios and
the investor enters the market at time j in the scenario (S, j). The importance
of the Leinert condition lies in the following dichotomy: If the Leinert condition
holds, then σ(S,j)f = I(S,j)(f) for any f ∈ E(S,j) (and, hence, the idealization of
trading with a superposition of countably many portfolios does not change the
price of payoffs ΠV,H

j,n generated by ‘simple’ portfolios). If, however, the Leinert
condition fails, then σ(S,j)f = −∞ for any f ∈ E(S,j) (and, hence, the idealized
trading strategies generate arbitrage). See [17, p. 262] for the first claim and [16,
p. 449] for the second one in the abstract setting of non-lattice integration.

Suppose that a trader enters the market at time j. In view of the previous
discussion, it is tempting to suppose that the Leinert condition holds at every node
(S, j). This would ensure that the trader arrives in an economically meaningful
environment in every scenario. However, assuming the Leinert condition at every
node is too strong, as it rules out the possibility of arbitrage nodes of type II. This
will become clear from the following short discussion of equivalent characterizations
of the Leinert condition.

Definition 2.8 (L(S,j)). For a given node (S, j), j ≥ 0, the following property will
be called (conditional) continuity from below:

(L(S,j)) f ≤
∑
m≥1

fm on S(S,j), f ∈ E(S,j), fm ∈ E+
(S,j) =⇒ Ijf(S) ≤

∑
m≥1

Ijfm(S).
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Proposition 3.4 shows, among other things, that the properties σj0(S) = 0,
(L(S,j)) and the Leinert condition (from Definition 2.7) are equivalent. Henceforth,
we will loosely refer to any of these equivalent properties as Leinert’s condition.

The following lemma shows that Leinert’s condition cannot hold at an arbitrage
node of type II.

Lemma 2.9. Assume that (S, j) is an arbitrage node of type II. Then,
σjf(S) = −∞ for any f ∈ Q.

In particular, Leinert’s condition fails at (S, j).

Proof. We may consider the case when S̃j+1 > Sj for all S̃ ∈ S(S,j). Take then,
for all m ≥ 1, Hm

j (S̃) = 1 and Hm
i (S̃) = 0 for all i > j, V m = 0. Also, H0

i = 0
for all i ≥ j. Then, for any V 0 ∈ R, f(S̃) ≤ V 0 + ∞ = V 0 +

∑
m≥1 H

m
j (S̃) ∆jS̃

holds for any S̃ ∈ S(S,j) and f ∈ Q. The first claim then follows. In particular,
σj0(S) = −∞, i.e., Leinert’s condition fails. □

Therefore, under the presence of type II nodes one cannot uphold the property
that Leinert’s condition is satisfied at all nodes (S, j). The way to allow for type II
nodes is to weaken the latter property to hold only a.e. as in the following definition.

Definition 2.10 (Properties (Lj)-a.e. and (L)-a.e.). For a fixed j ≥ 0, the follow-
ing two statements will be referred to as property (Lj)-a.e.:

(i) (L(S,0)) holds;
(ii) N (Lj) ≡ {S ∈ S : (L(S,j)) fails} is a null set.

If, in addition to item (i), display (2.5) below holds, we will say that (L)-a.e. holds:
{S ∈ S : ∃ k ≥ 0 s.t. (L(S,k)) fails} is a null set. (2.5)

Item (i) guarantees that I(1S) = 1 and so if (Lj)-a.e. holds, then S \ N (Lj) ̸= ∅
and in fact I(1S\N (Lj )) = 1. If (L)-a.e. holds, then N (Lj) can be replaced by⋃

j∈N N (Lj) in the previous identity. Under appropriate conditions, Theorem 3.10
and Corollary 3.11 establish property (L)-a.e.

Remark 2.11. As a side remark, we note that we could dispense with our standing
assumption that S is 0-neutral, which in turn makes Ij well defined at all nodes
(S, j). Namely, we can drop the hypothesis of 0-neutrality and replace it with
(L)-a.e.; the latter implies that Ij is well defined (and linear and isotone) only
at almost every node (S, j). This property is enough to develop the results in the
paper; for simplicity we have refrained from adopting such more general framework.

Definition 2.10 provides a first instance of a situation, where the nodewise defined
conditional operators are combined with global null sets. In order to deal with
such situations it is convenient to work with the ‘global’ notation set forth in the
following remark.

Remark 2.12. Fix j ≥ 0. H = (Hi)i≥j with Hi : S → R is called a global
portfolio if, for every S ∈ S, the restriction ((Hi)|(S,j))i≥j belongs to H(S,j) The
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set of global portfolios is denoted by Hj . We say that a function g ∈ Q is j-non-
anticipative if g(S) = g(S̃), whenever the nodes (S, j) and (S̃, j) coincide. The
function f : S → R is called a global elementary function starting at j if there are
j-nonanticipative functions V , n, and a global portfolio H ∈ Hj such that

f(S) = V (S) +
n(S)−1∑

i=j

Hi(S)∆i(S)

for every S ∈ S. Here, n takes values in {j, j + 1, . . .} and V takes values in R.
In this case, we write ΠV,H

j,n ≡ f and think of this expression as portfolio payoff
of a global (simple) portfolio with investment horizon n and initial endowment V .
These portfolio payoffs can equivalently be characterized as the elements of the set

Ej = {f : S → R : f|(S,j) ∈ E(S,j) for every S ∈ S}.

For f = ΠV,H
j,n ∈ Ej , we define Ijf(S) ≡ I(S,j)(f|(S,j)) = V (S). Writing E+

j for the
cone of non-negative functions in Ej , we then observe that for f ∈ P and S ∈ S,

Ijf(S) ≡ I(S,j)(f|(S,j))

= inf
{ ∞∑

m=1
V m(S) : ΠV m,Hm

j,nm
∈ E+

j , f(S̃) ≤
∞∑

m=1
ΠV m,Hm

j,nm
(S̃) ∀S̃ ∈ S(S,j)

}
.

Hence, we may think of Īj as an operator mapping P to the space of j-non-
anticipative functions. In the same way, we may interpret σjf(S) ≡ σ(S,j)(f|(S,j)),
which is defined for f ∈ Q. Note that, in the case j = 0, the operators I0, I0, and
σ0 do not depend on S and we will often abbreviate them by omitting the sub-
script 0. We remark that σj acts on all functions f ∈ Q and not just on measurable
ones. This is in line with the theory of outer integrals with respect to probability
measures, see, e.g., [21].

2.3. Replicable claims and conditionally integrable functions. In view of
the discussion in the previous subsection, we may think of a generalized portfolio
as an element of the vector space spanned by global portfolios and countable super-
positions of global portfolios with non-negative portfolio payoffs. More precisely,
let us define

Mj ≡
{ ∞∑

m=1
fm, fm ∈ E+

j (j ≥ 1),
[ ∞∑

m=1
Ijfm < ∞ a.e.

]}
.

Elements in Mj represent the payoff of a superposition of global portfolios with
nonnegative portfolio payoffs, when the investor enters the market at time j. The
condition

∑∞
m=1 Ijfm < ∞ a.e. means that the total initial endowment required for

this trading strategy is finite outside a global null set. The payoff of a generalized
portfolio starting at time j is a function g ∈ Q of the form g = h+u− v for h ∈ Ej

and u, v ∈ Mj . We say that f ∈ Q can be replicated by a generalized portfolio
starting at time j if there are h ∈ Ej , u, v ∈ Mj and N1, N2 ⊂ S such that

f(S) = h(S) + u(S) − v(S), S /∈ (N1 ∪N2),
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where N1 is a global null set and N2 is a null set conditional on (S̃, j) for every
S̃ /∈ N1. The roles of the global null set and the conditional null set are as follows:
Elements S1 ∈ N1 may be thought to correspond to exceptional scenarios (S1, j),
when entering the market at time j, in which the investor does not need to set up a
replicating portfolio (e.g., because the candidate for a replicating portfolio requires
infinite initial endowment). If S̃ /∈ N1, then the investor starts the replication in
the conditional model S(S̃,j), but it must hold only outside the null set N2 ∩ S(S̃,j)
of this conditional model. In the present section, we write Rj for the space of all
the functions that can be replicated by a generalized portfolio starting at time j.

We next introduce the set of conditionally integrable functions with respect to
the superhedging outer integral σj as

Lσj
= {f ∈ Q : σjf + σj(−f) = 0 a.e.}.

Defining the conditional inner integral via σjf = −σj(−f), the integrability con-
dition above can be re-written as σjf − σjf = 0 a.e.

It turns out that the restriction of σj to Lσj
is linear in the sense that

σj(αf1 + f2) = ασj(αf1) + σj(f2) a.e.
for every α ∈ R and f1, f2 ∈ Lσj

(see Proposition 4.1).
Notice that the inner integral σjf ≡ −σj(−f) corresponds to the maximal initial

endowment for subhedging f with a generalized portfolio. Hence, integrability
means that buyer and seller agree on the same price for trading f . In parallel to
the classical model-based theory (e.g., [15]), one expects that this is the case if
and only if f can be perfectly replicated. Example 2.16 below illustrates, however,
that Lσj

can be larger than Rj in our model-free setting, even if (L)-a.e. holds.
However, the classical relation can be restored if we assume that König’s condition
is satisfied in the following sense:

Definition 2.13 ((Kj)-a.e.). Given a fixed j ≥ 0, we say that condition (Kj)-a.e.
is in force if (K(S,0)) holds and if there is a global null set K such that (K(S,j))
holds for every S /∈ K. In other words,

Ij(f)(S) + Īj(f−)(S) = Īj(f+)(S) for all f ∈ Ej and all S ∈ S \ K.
Similarly, we say that (K)-a.e. holds if (K(S,0)) holds and there is a global null
set K such that (K(S,k)) holds for all k ≥ 0 and for every S /∈ K.

The following theorem is a special case of Theorem 4.15 below and can be con-
sidered as a conditional version of König’s characterization of integrable functions
in [16].

Theorem 2.14. Suppose (K)-a.e. holds. Then, Lσj
= Rj for every j ≥ 0.

Remark 2.15. Note that, in contrast to the theory of model-free finance in con-
tinuous time (e.g., the discussion in [2, Remark 2.6]), we do not impose any topo-
logical assumptions on the trajectory set S, but instead study the role of continuity
conditions on the (conditional) hedging price operators I(S,j). While Leinert’s con-
tinuity condition is the minimal requirement for setting up a reasonable framework
for trading with the class of generalized portfolios introduced above, Theorem 2.14
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Figure 1. Trajectory set for Example 2.16.

can be seen as an indication that König’s stronger continuity condition is a cor-
nerstone to recover analogues of classical results in the trajectorial framework in
infinite discrete time.

2.4. Examples. In this subsection, we discuss Theorem 2.14 and the trajectoral
setting through some examples. The first one is a counterexample, which shows
that the characterization of replicable functions in Theorem 2.14 may fail if König’s
condition is replaced by the weaker continuity condition of Leinert.

Example 2.16. We assume that there are no portfolio restrictions, i.e., H(S,j) is
the space of all non-anticipative sequences.

The trajectory set S = S0 ∪ S+ ∪ S−, illustrated in Figure 1, is partitioned into
the three subsets:

S+ = {S+,n : n ∈ N}, S+,n
i =


1/2, i = 0,
3/4, i = 1, . . . , n,
1, i ≥ n+ 1;

S0 = {S0}, S0
i = 1/2, i ≥ 0;

S− = {S−,n : n = −1, 0, 1}, S+,n
i =


1/2, i = 0,
1/4, i = 1,
1/4 + n/8, i ≥ 2.

We will show the following items:
(1) S+ is the largest global null set, i.e., ∥1S+∥ = 0, but ∥1{S}∥ > 0 for every

S /∈ S+.
(2) σf = f(S0) for every f ∈ Q, hence Lσ = Q (i.e., all functions are inte-

grable).
(3) There are functions f ∈ Q which do not belong to R0, i.e., f cannot be

replicated by a generalized portfolio.
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(4) Leinert’s condition (L(S,j)) holds for every S /∈ S+ and j ≥ 0; thus, in view
of item (1), (L)-a.e. holds.

When verifying these items, we will make use of the following notation. For f ∈
E0, f has the form f(S) = V +

∑n−1
i=0 Hi(S)∆iS for some portfolio H, initial

endowment V and investment horizon n. For k ≥ 0, we then write fk(S) =
V +

∑(n∧k)−1
i=0 Hi(S)∆iS. Note that, for every f ∈ E+

0 and k ≥ 0, fk ∈ E+
0 by [13,

Lemma 1], because all nodes are zero neutral.

(1) Define f+,n = 1{S+,n} for n ≥ 1. Since f+,n(S) = 0 + 4 · 1(S+,n,n)(S)∆nS

for every S ∈ S, we conclude that f+,n ∈ E+
0 and ∥1S+∥ ≤

∑
m≥1 ∥1{S+,n}∥ = 0

by the σ-subaddditivity of the norm operator. To show that the singletons {S} for
S /∈ S+ are not null sets, we provide the argument for S = S−,1, noting that the
other cases can be treated analogously. Suppose (fm)m≥1 is a sequence in E+

0 such
that ∑

m≥1
fm ≥ 1{S−,1} on S and V ≡

∑
m≥1

I(fm) < ∞.

Then, in particular,

(I) :
∑
m≥1

fm,2(S−,1) ≥ 1, (II) :
∑
m≥1

fm,2(S−,−1) ≥ 0, (III) :
∑
m≥1

fm,1(S+,1) ≥ 0.

By the Aggregation Lemma (Lemma C.5), the superposition of the portfolio posi-
tions can be aggregated into a single portfolio position at up-down nodes. Hence,
there are real constants a, b (the aggregated portfolio position at the initial node
(S−,1, 0) and in the down-branch at time 1 (S−,1, 1)) such that

(I) : V − a/4 + b/8 ≥ 1, (II) : V − a/4 − b/8 ≥ 0, (III) : V + a/4 ≥ 0.

Considering the inequality (I) + (II) + 2(III) leads to V ≥ 1/4. Hence, ∥1{S−,1}∥ ≥
1/4.

(2) Fix some arbitrary f ∈ Q and set f∗ := 4 |f(S0)| + 4 maxn=−1,0,1 |f(S−,n)|.
Define f0 ∈ E0 via

f0(S) ≡ f(S0) − f∗(S1 − S0) =


f(S0), S = S0;
f(S0) − f∗/4 ≥ −f∗/2, S ∈ S+;
f(S0) + f∗/4 ≥ f(S), S ∈ S−.

Let fm = (f∗/2) · f+,m for m ≥ 1, with f+,m ∈ E+
0 defined in item (1). Then,∑

m≥0 fm ≥ f on S and
∑

m≥0 I(fm) = f(S0). Hence, σf ≤ f(S0). As the
trajectory S0 is constant, it is clear that superhedging f (with a generalized port-
folio) requires at least the initial endowment of f(S0), leading to σf ≥ f(S0). In
particular, σf + σ(−f) = f(S0) − f(S0) = 0, i.e., f ∈ Lσ.

(3) By item (1), f ∈ R0 if and only if there are h ∈ E0 and u, v ∈ M0 such that
f(S) = (h+u− v)(S) for every S /∈ S+. Applying the same aggregation argument
as in item (1) to the portfolio positions of u and v at the up-down nodes (S−,1, 0)
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and (S−,1, 1) and taking into account that the trajectories become constant, we
observe that f ∈ R0 if and only if there are real constants V, a, b such that

f(S) = V + a(S1 − S0) + b(S2 − S0), S /∈ S+.

Hence, restricting the functions in R0 to the complement of S+ yields a three-
dimensional vector space, while restricting the functions in Q to the complement
of S+ leads to a four-dimensional vector space. In particular, R0 ̸= Q = Lσ, i.e.,
the assertion of Theorem 2.14 does not hold in this example.

(4) Consider the space S(S,j) for some j ≥ 0 and S /∈ S+. Then, the trajectory
Sj = (S0, . . . , Sj , Sj , Sj , . . .), which is constant after time j, belongs to S(S,j). The
same argument as for the lower bound in item (2) implies σ(S,j)0 ≥ 0. Hence,
(L(S,j)) holds by Proposition 3.4.

In view of Theorem 2.14, we observe that (K)-a.e. is not satisfied. We can
make this failure of König’s condition more explicit by considering the function
f = 1S− − 1S+ , which belongs to E0 and satisfies If = 0, because f(S) = 0 −
4(S1 − S0) for every S ∈ S. Then, f− = 1S+ is a null function by item (1) and
If+ ≥ I1{S−,1} > 0 by the same item. Hence,

I(f) + If− = 0 < If+,

which shows that (K(S,0)) fails.

Remark 2.17. It is easy to check that the point mass Q on S0 is the unique
martingale measure in the previous example. In particular, the superhedging outer
integral σ coincides with the expectation under the unique martingale measure Q,
leading to a superhedging duality in the context of this simple example. The
subtle point is that the minimal superhedge (fm)m≥0 for f constructed in item (2)
of the previous example may fail to be a perfect hedge, because it typically will
over-replicate on the set S−, which is not a null set with respect to the norm
operator ∥ · ∥ on the trajectorial model. Hence, perfect hedging is not possible
outside a global null set despite of the uniqueness of the martingale measure. This
failure results from the inconsistency between the null sets of the trajectorial model
defined via the Vovk-type approach and the null sets of the martingale measure.
This problem can (at least partially) be mended by imposing König’s condition
which enforces the consistency between the null sets of the norm operator and the
null sets the superhedging outer integral, see Corollary 4.14 below (which is based
on [16, Bemerkung 1.8]).

The second example illustrates the role of σ in an extreme situation of a trajec-
tory set without martingale measure.

Example 2.18. Consider the following trajectory set taken from [5, Example 4],
which is sketched in Figure 2. Here,

S = S+ ∪ S−, S± = {S±,n : n ∈ N},

Rev. Un. Mat. Argentina, Vol. 68, No. 2 (2025)



CONDITIONAL NON-LATTICE INTEGRATION, PRICING, SUPERHEDGING 641

ppppppppp
ppppppppp
ppppppppp
ppppppppp
ppppppppp
ppppppppp
pppppp

p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p

p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p

0

3
4

1−

2−

5
2

3 q q qS+,1

q��
�
�
�
q��

�
�
�

�
����

qq q qS+,2

�����
qq q qS+,3

�����qq q qS+,4

hhhhhq q q qS−,3PPPPPq q q qS−,2@
@
@
@
@q q q qS−,1

0 1 2 3 4

...
...

...

......
...

...

Figure 2. No-martingale measure example.

where

S+,n
i =


1, i = 0,
2, i = 1,
2 + 1

n , i ≥ 2,
S−,n

i =
{

1, i = 0,
1 − 1

n2 , i ≥ 1.

We assume again that there are no portfolio restrictions. It is shown in [5] that
(L)-a.e. holds in this example, while, obviously, there is no probability measure on
the power set of S that makes the projection process Tk(S) ≡ Sk into a martingale.

We first show that, for every f ∈ Q,
σf = lim sup

n→∞
f(S−,n). (2.6)

We write f∗ = lim supn→∞ f(S−,n). The same aggregation argument as in the
previous example combined with the fact that trajectories in S− become constant
after time 1 implies the following: If σf < V ∈ R, then there is a constant H0 ∈ R
such that

V +H0(S−,n − 1) ≥ f(S−,n), n ≥ 1.
Passing with n to infinity along a subsequence which approaches the lim sup, we
obtain V ≥ f∗. Hence, σf ≥ f∗.

For the converse inequality, fix ε > 0 and chooseN0 = N0(ε) such that f(S−,n) ≤
f∗ + ε for every n ≥ N0. Let C ≡ max{|f(S−,n)| : n ≤ N0} and choose H0 > 0
sufficiently large such that f∗ + ε−H0(S−,N0 − 1) ≥ C. Then, for every n ≤ N0,

f∗ + ε−H0(S−,n − 1) ≥ f∗ + ε−H0(S−,N0 − 1) ≥ C ≥ f(S−,n).
Moreover, for n > N0,

f∗ + ε−H0(S−,n − 1) ≥ f∗ + ε ≥ f(S−,n).
Hence, f0 ∈ E0, defined via f0(S) = f∗ + ε − H0(S1 − S0) for S ∈ S, satisfies
f0 ≥ f on S−. For m ≥ 1, consider f+,m(S) = 0 + 1(S2 − S1), S ∈ S. Then,
f+,m ∈ E+, noting that this function vanishes on S− and is strictly positive on S+.
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In particular,
∑∞

m=1 f
+,m = ∞·1S+ . Therefore, f0 +

∑∞
m=1 f

+,m ≥ f on S, which
implies σf ≤ f∗ + ε. Passing with ε to zero finishes the proof of (2.6).

We collect some consequences of (2.6):
(1) The space of integrable functions is

Lσ = {f ∈ Q : lim
n→∞

f(S−,n) exists in R}.

In particular, R0 ⊊ Lσ ⊊ Q. The first inclusion can be seen to be strict
as in the previous example, by noting that the restriction of the functions
in R0 to S− forms a two-dimensional vector space and that ∥1{S−,n}∥ > 0
for every n ≥ 1.

(2) If f ∈ Q is of the form f(S) = F (S2) for some function F : R → R which
is left-continuous at 1, then, as a consequence of item (1), f ∈ Lσ and
σf = F (1).

(3) σ fails to be countable-subadditive on the set nonnegative integrable func-
tions, as, e.g.,

σ

( ∞∑
m=1

1{S−,n}

)
= σ(1S−) = 1 > 0 =

∞∑
n=1

σ(1{S−,n}).

Here the identity σ(1S−) = 1 can, e.g., be derived by applying item (2)
to the function F (x) = 1(−∞,1](x). In particular, there is no subset P0
of the set of all probability measures on the power set of S such that
σ(·) = supP∈P0 EP[·].

Let us explain what intuitively happens in this example. The Ī-operator detects
the up-branch S+ as a null set, but provides positive mass (actually mass 1) to
the down-branch S−. The topological closure of the down-branch is cl(S−) =
S− ∪ {S0}, where S0 = (1, 1, . . .) is the constant trajectory. The integrability con-
dition in item (1) just means that f can be continuously extended to the enlarged
trajectory set S ′ ≡ S+ ∪ cl(S−) via f(S0) ≡ limn→∞ f(S−,n). Note that the en-
larged trajectory set S ′ has a unique martingale measure, namely the point mass
Q on the new trajectory S0. Hence, for an integrable function f , σf coincides
with the expectation of the continuous extension of f under the unique martingale
measure Q on S ′.

Summarizing, in this example the non-lattice framework first removes the null
sets and then makes the remaining model ‘reasonable’ by passing to the topological
closure.

Remark 2.19. The previous example is in striking contrast to the classical theory,
in that the trajectory set S does not support any martingale measures. We now
sketch another extreme case, where σ, in fact, coincides with a classical integral:
Suppose that the trajectory set consists of an (infinite-time) binomial tree with up-
down nodes only. Then, the elementary functions E0 form a vector-lattice (under
the assumption of no portfolio restrictions) and the superhedging outer integral σ
corresponds to a classical integral with respect to a measure µ as detailed in [17,
p. 261]. In this case, it is not difficult to check that the measure µ coincides with the
unique martingale measure Q for the model and that the conditional superhedging
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operator σj is a version of the conditional expectation EQ[·|Fj ] where (Fj)j≥0 is
the filtration generated by the coordinate process Tj(S) = Sj . Example F.3 in
Appendix F below explains how to construct integrable functions in the limit (as
time goes to infinity) in a trinomial tree, where the σ-operator does not agree with
a classical integral.

The next example illustrates the interplay between the global null set and the
conditional null set for replication in the presence of portfolio constraints.

Example 2.20. We now assume that portfolios are deterministic in the following
sense: H = (Hi)i≥j belongs to H(S,j) if and only if there is a sequence (hi)i≥j

of real numbers such that Hi(Ŝ) = hi for every Ŝ ∈ S(S,j). Hence, the investor
fixes all future portfolio positions when entering the market in the scenario (S, j)
and does not react to future price movements of the stock. Clearly, this constraint
satisfies (H.1)–(H.4). We define the trajectory set S = S0 ∪ S+ ∪ S− (which in fact
is a three-period model) via

S0 = {S0,n : n = −1, 0, 1}, S0,n
j =


10, j = 0,
5, j = 1,
5 + n, j ≥ 2;

S+ = {S+,n : n = 0, 1, 2}, S+,n
j =


10, j = 0, 1,
11, j = 2,
11 + n, j ≥ 3;

S− = {S−,n : n = 0,−1,−2}, S−,n
j =


10, j = 0, 1,
9, j = 2,
9 + n, j ≥ 3.

The initial node (S, 0) is an arbitrage node of type 1, and the arbitrage can be
exploited by shortening the stock, e.g., f = 1S0 = 0 − 1/5 · (S1 − S0) ∈ E+

0 . This
shows that N1 = S0 is a global null set. In an analogous way, one can exploit the
type I arbitrage at the node (S+,0, 2) in the conditional space S(S+,0,2) (by buying
the stock) and the type I arbitrage at the node (S−,0, 2) in the conditional space
S(S−,0,2) (by shortening the stock). Hence, N2 = {S+,n, S−,−n : n = 1, 2} is a null
set conditional on (S, 2) for every S /∈ N1. Note, however, that these arbitrages
at the nodes (S+,0, 2) and (S−,0, 2) cannot be realized by a trader who enters the
market at time 0. This is because, due to the portfolio constraint, such a trader
has to apply the same portfolio position at time 2 at both nodes (S+,0, 2) and
(S−,0, 2). Hence, N2 is not a global null set. The definition of the set of replicable
functions R2 at time 2 (based on global null sets and conditional ones) now only
requires that perfect replication is possible on the set S \ (N1 ∪N2) = {S+,0, S−,0}.
Hence, Q = R2. Indeed, if f ∈ Q, then g ∈ E2 defined by g = f(S+,0)1(S+,0,2) +
f(S−,0)1(S−,0,2) clearly coincides with f on S \ (N1 ∪ N2). It is also not difficult
to check directly that Q = Lσ2 in this example.
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2.5. Relation to the literature. In this section, we will discuss the relation of our
setting (the non-lattice approach based on [17, 16]) to existing model-independent
settings in the literature, distinguishing between the finite discrete-time setting
([1, 7, 9, 10, 8]), the continuous-time approach ([22, 3, 2, 4]), and the game-theoretic
infinite discrete-time approach ([20, 19]).

2.5.1. Null sets as unlikely financial events. There is a rich literature on model
independent versions of the first fundamental theorem of asset pricing and super-
hedging duality results in finite discrete-time, e.g., [1, 7, 9, 10, 8]. Some of these
references [9, 10, 8] rely on aggregation of local arbitrage opportunities at the
nodes, in order to prescribe events that are negligible. This approach leads to a
notion of null sets which, a priori, does not depend on superhedging arguments
with nonanticipative portfolios. Then, e.g., in superhedging duality results, the
super-replication only needs to hold outside a null set. In contrast, the non-lattice
approach (which we adopt) and similarly the continuous-time framework (initiated
in [22]) require the superhedge to work pointwise on every trajectory and, a posteri-
ori, define a set N to be a null set if the indicator function of N can be superhedged
with zero (or arbitrarily small positive) initial capital. It is crucial that we rely
upon countable superpositions of positive simple portfolio payoffs. Otherwise, zero-
neutral arbitrage nodes of type II, as in Example 2.18, or arbitrages that appear
in the long run, as in Example 2.16, cannot be detected by trading with simple
portfolios only. Compare with the construction of the sequences {f+,m}m≥1 in
these examples.

Let us have a closer look at the backward recursion, which is applied in [8,
Eq. (14)] to identify null sets. The following discussion adapts their construction
to our setting (but we stress that [8] covers a general multi-asset framework). As [8]
works in finite discrete time, we assume that the model has finite maturity, in the
sense that all trajectories stay constant after some fixed time N ∈ N (independent
of the trajectory). Starting from the last time period, between time N − 1 and N ,
they first remove all trajectories S which pass through an arbitrage node at time
N − 1, unless SN = SN−1. The same procedure is then applied to the reduced
trajectory set at time N − 2 and repeated by backward induction until one reaches
time 0. It turns out that the trajectories S in the remaining submodel (after strip-
ping away inductively all local arbitrage opportunities) are exactly those for which
the singleton {S} has strictly positive probability under at least one martingale
measure Q. Hence, either the remaining submodel is empty or it only has up-down
nodes and flat nodes. The theory developed in [8] supposes that this remaining
submodel is non-empty (via assuming existence of a martingale measure for the
original model) and then restricts all superhedging arguments to this remaining
submodel. We note in passing that it is not straightforward to generalize this
backward recursion procedure to a genuine infinite time horizon.

Revisiting Example 2.18 (which is in fact a two-period model, since all trajec-
tories become constant after time 2), we can illustrate the difference between the
approach in [8] and ours. Following the backward induction algorithm of [8], the
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(red) upper branch S+ is removed from the model at time 1, because these tra-
jectories pass through an arbitrage node of type II at time 1. The reduced model
then consists of the blue lower branch S− only. However, in this reduced model
the initial node (at time 0) is an arbitrage node of type II, and, is, thus, removed
in the next step of the backward induction. The final remaining model is empty,
corresponding to the fact that the original model has no martingale measure. In
contrast, the non-lattice approach applies pure superhedging arguments to detect
null sets and, thus, finds that the lower branch S− is not a null set. It then, moves
to the topological closure of S− to come up with an ‘arbitrage-free’ model, which
is applied for pricing purposes (as detailed in Example 2.18).

2.5.2. Comparison to Vovk’s approach. The continuous-time pathwise framework
initiated by Vovk [22] is based on a superhedging operator which is nowadays
called Vovk’s outer measure and which determines the null sets of the model, see,
e.g., [4] for a discussion of Vovk’s outer measure and variations thereof. This ap-
proach is very close to ours in that the superhedging operator is the primary object,
superhedges must hold on every path, and null sets are derived by pathwise su-
perhedging arguments. Model-independent superhedging dualities in continuous
time (e.g., [4, 3, 2]) either require that the trajectory set consists of all continuous
paths [4] or the trajectory set (sometimes called prediction set in the continuous
time framework) is assumed to satisfy some topological properties (as in [2]) includ-
ing some compactness requirements. A typical assumption is that any stopped path
belongs to the prediction set, see, e.g., [3, 2] or [23]. Translated into our setting,
the analogous property is the following one: For any S ∈ S and j ≥ 0, the tra-
jectory (S0, . . . , Sj−1, Sj , Sj , . . .) belongs to S. Example 3.14 (found at the end of
Section 3) shows that this property implies that König’s condition (K(S,j)) holds at
every node (S, j). Moreover, it rules out arbitrage nodes of type II and, more gen-
erally, the possibility to recoup losses at later times as illustrated in Example 2.16.
Compared to the continuous-time framework, our infinite discrete-time setting is
conceptually simpler and it is promising in order to gain new insights by studying
relevant questions through the continuity conditions of non-lattice integration.

We also comment on the relation to the game-theoretic approach in infinite
discrete-time as outlined in Chapter 7 of Shafer and Vovk [19]. Their setting
requires to choose a local outer expectation operator at each node, e.g., in the
application to mathematical finance, the minimal superhedging cost for the one-
period submodel starting at an up-down node. Then, it proceeds to construct
a global operator E, which is closely related to our σ, from the local outer ex-
pectations. They impose, however, conditions which ensure that the local outer
expectation and the global one coincide on functions which depend on the next
time step only, see [19, Lemma 7.6]. Hence, situations as in Example 2.16 cannot
be accommodated in their framework: Superhedging the indicator function of the
event S+ = {S ∈ S : S1 > S0} in the one-period trinomial model starting at time 0
requires an initial capital of 1/8 > 0. However, the one-period submodel cannot see
that all trajectories in S+ will eventually increase. This arbitrage in the long run
results in the fact that its indicator function can be superhedged with zero initial
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capital in the dynamic infinite-time model – leading to an inconsistency between
the local one-period superhedging price and the global one. While our non-lattice
approach allows for trajectories in which losses at an earlier time can be recuper-
ated at later times (either by realizing an arbitrage at an type II arbitrage node as
in Example 2.18 or by exploiting an arbitrage in the long run as in Example 2.16),
such a situation is not possible under the assumptions in the game-theoretic ap-
proach in [19]. We also refer to [5] for a more detailed comparison between the
game-theoretic approach and the non-lattice approach.

3. On Leinert’s condition and König’s condition

In this section, we provide criteria on how to check the continuity conditions of
Leinert and König. Before doing so, we collect some elementary properties of the
superhedging operators I and σ.

3.1. Some properties of the superhedging operators. The proofs of the fol-
lowing elementary propositions, adapted from [16, 17] to our setting, will be pro-
vided in Appendix B. All equalities and inequalities are valid for all points in the
spaces where the functions are defined, unless qualified by an explicit ‘a.e.’

Proposition 3.1 (see proof in Appendix B). Let (S, j) be a fixed node.
(1) Consider f, g ∈ P . If f(S̃) ≤ g(S̃) ∀S̃ ∈ S(S,j), then Ijf(S) ≤ Ijg(S).
(2) If f ∈ P and α ∈ R+, then Ij(αf)(S) = αIjf(S).
(3) If g, gk ∈ P for k ≥ 1 satisfying g(S̃) ≤

∑
k≥1 gk(S̃) ∀S̃ ∈ S(S,j), then

Ijg(S) ≤
∑
k≥1

Ijgk(S).

(4) Ijf(S) ≤ Ijf(S) for f ∈ E+
j .

The next proposition is concerned with the norm operator and with null sets.

Proposition 3.2 (see proof in Appendix B). Consider f, g : S → [−∞,∞] and a
fixed node (S, j). Then,

(1) ∥g∥j(S) = 0 if and only if g = 0 a.e. on S(S,j).
(2) If ∥g∥j(S) < ∞ then |g| < ∞ a.e. on S(S,j).
(3) If |f | ≤ |g| a.e. on S(S,j) then ∥f∥j(S) ≤ ∥g∥j(S). Therefore, if |f | = |g|

a.e. on S(S,j) then ∥f∥j(S) = ∥g∥j(S).
(4) The countable union of conditional null sets is a conditionally null set.
(5) For f ∈ P and 0 ≤ j ≤ k, 0 ≤ Ij(Ikf) ≤ Ijf . Therefore, if g ∈ Q is

conditionally null at S(S,j) then Ik(|g|) = 0 a.e. on S(S,j).

We now turn to the superhedging outer integral σ.

Proposition 3.3 (see proof in Appendix B). Unless indicated otherwise, consider
f, g ∈ Q and let (S, j) denote a generic node.

(1) σj(f + g)(S) ≤ σjf(S) + σjg(S).
(2) σjf(S) ≤ Ijf(S) if f ∈ P .
(3) σjf(S) ≤ Ijf(S) if f ∈ Ej.
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(4) If f ≤ g a.e. on S(S,j), then σjf(S) ≤ σjg(S). Therefore if f = g a.e. on
S(S,j), then σjf(S) = σjg(S).

(5) σj(gf)(S) = g(S)σj(f)(S) if g(S) = g(S0, . . . , Sj) > 0.
(6) σjf(S) ≤ σj(|f − g|)(S) + σjg(S).
(7) Either (a) σj0 = 0 or (b) A ≡ {σj0 < 0} ̸= ∅ and σjf(S) = ±∞ for all

S ∈ A and for all f ∈ Q.
(8) If σjf(S) < ∞ then f < ∞ conditionally a.e. at (S, j).
(9) If σj0(S) = 0, σjf(S) < ∞ and σjf(S) > −∞, then σjf(S) > −∞ and

σjf(S) < ∞ and |f | < ∞ a.e. on S(S,j).

The next proposition provides several equivalent formulations of Leinert’s con-
dition.

Proposition 3.4 (see proof in Appendix B). For a given node (S, j), j ≥ 0,
consider the following items:

(1) σj0(S) = 0.
(2) Property (L(S,j)).
(3) Leinert’s condition (from Definition 2.7).
(4) σjf(S) = Ijf(S) = σjf(S) for f ∈ E(S,j).
(5) |Ijf(S)| ≤ ∥f(S)∥j for f ∈ E(S,j).
(6) Ijf(S) = Ijf(S) for f ∈ E+

(S,j).
Then, items (1)–(4) above are equivalent. Moreover, (4) ⇒ (5) ⇒ (6).

If Leinert’s condition is in force, the outer integral has the following additional
properties.

Corollary 3.5 (see proof in Appendix B). Given a node (S, j), j ≥ 0, assume
σj0(S) = 0. Then, for f ∈ Q,

(1) 0 ≤ σjf(S) + σj(−f)(S) and σjf(S) ≤ σjf(S).
(2) |σjf(S)| ≤ σj |f |(S).
(3) If f = 0 a.e. on S(S,j) then σjf(S) = σj |f |(S) = 0 = σj |f |(S) = σjf(S),

which in turn implies σjf
+(S) = σjf

−(S) = 0 = σjf
−(S) = σjf

+(S).
(4) If 0 ≤ g a.e. on S(S,j), then 0 ≤ σjg(S).

3.2. Leinert’s condition. In view of item (7) of Proposition 3.3, we observe that
condition (L)-a.e., introduced in Definition 2.10, is crucial to have an appropriate
conditional outer integral defined by σj at all time points j ∈ N0. In order to obtain
conditions for its validity, we discuss some properties concerning the behavior of
trajectories as time approaches infinity.

Given a sequence {Sn}n≥0 ⊂ S(S,j) satisfying

Sn
i = Sn+1

i , 0 ≤ i ≤ n ∀n, (3.1)

define S = {Si}i≥0 by Si ≡ Si
i . We will use the notation S = limn→∞ Sn. Notice

that Si = Si, 0 ≤ i ≤ j, because Si ∈ S(S,j). Moreover,

Si = Sn
i , 0 ≤ i ≤ n ∀n ≥ 0.
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Let S(S,j) be the set of such S; clearly, S(S,j) ⊂ S(S,j), because for S̃ ∈ S(S,j) we
can take S̃n = S̃ for all n ≥ 0. We say that S(S,j) is (trajectorially) complete if
S(S,j) = S(S,j).

Remark 3.6. (1) The process of going from S(S,j) to S(S,j) does not alter the
properties of nodes (being 0-neutral, no-arbitrage, etc.), see [13] for some details.
Moreover, portfolios ΠV,H

j,n can be extended, in an obvious way, from acting on
S(S,j) to act on S(S,j); we will freely make use of this fact below without further
comments. Note, however, that completing the model by passing to S(S,j) is not
as harmless as it might appear at first glance. In the context of Example 2.16,
S = S ∪ {(1/2, 3/4, 3/4, . . . )}. Then, the up-branch S+ ∪ {(1/2, 3/4, 3/4, . . . )} in
the completed model is not a null set anymore. So the completion process may
change null sets into non-null sets.

(2) The game-theoretic infinite discrete time approach of [19] assumes that the
analogue of trajectorial completeness is satisfied in their context by the very defi-
nition of the sample space (which replaces our trajectory space), see [19, p. 147].

We next introduce a weaker condition than trajectorial completeness, concerning
the limit behavior of trajectories.

Definition 3.7 (Reversed Fatou property). We will say that S(S,j) satisfies the
reversed Fatou property (RFP, for short) if, for any f0 ∈ E(S,j), fm = ΠV m,Hm

j,nm
∈

E+
(S,j), m ≥ 1, satisfying

∑
m≥1 V

m(S) < ∞, and S ∈ S(S,j), there exists at least
one {Sn}n≥0 ⊆ S(S,j) such that S = limn→∞ Sn and∑

m≥0
lim sup

n→∞
fm(Sn) ≥ lim sup

n→∞

∑
m≥0

fm(Sn). (3.2)

Remark 3.8. Given a sequence {Sn}n≥0 satisfying (3.1):∑
m≥0

lim sup
n→∞

fm(Sn) =
∑
m≥0

lim sup
n→∞

fm(Sn
0 , . . . , S

n
nm

)

=
∑
m≥0

fm(Snm
0 , . . . , Snm

nm
) =

∑
m≥0

fm(S).

Thus, Fatou’s lemma in conjunction with (3.2) implies

lim
n→∞

∑
m≥0

fm(Sn) =
∑
m≥0

fm(S).

Clearly, (3.2) holds if S ∈ S(S,j) by taking Sn ≡ S for all n, hence (3.2) is a
condition on elements of S(S,j) \ S(S,j). In particular, if S(S,j) is (trajectorially)
complete it then satisfies the RFP. An example in Appendix F shows that RFP is
weaker than (trajectorial) completeness.

Note that RFP is a local (i.e., nodewise) property which depends on the trajec-
tory set and on the sets of admissible portfolios. We may also consider the following
global version (i.e., defined only at the initial node (S, 0)) which is independent of
the portfolio sets.
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Definition 3.9. We will say that S satisfies the global reversed Fatou property
(GRFP, for short) if for every sequence (V m)m≥1 of non-negative reals, (nm)m≥1
of non-negative integers, and (Hm)m≥1 of non-anticipating sequences Hm

i : S → R
such that ΠV m,Hm

0,nm
≥ 0 the following holds: If

∑
m≥1 V

m < ∞ and S ∈ S then
there exists at least one {Sn}n≥0 ⊆ S such that S = limn→∞ Sn and∑

m≥1
lim sup

n→∞
fm(Sn) ≥ lim sup

n→∞

∑
m≥1

fm(Sn).

The following theorem and its corollary weaken the completeness assumption of
[5, Corollary 3.14] and extend it to the case of portfolio restrictions.

Theorem 3.10. Suppose GRFP holds and the following condition on arbitrage
nodes of type II is satisfied: If (S, j) is an arbitrage node of type II, then j ≥ 1,
(S, j − 1) is an up-down node and for every ε > 0 there are Sε,1, Sε,2 ∈ S(S,j−1)
such that

Sε,1
j − Sj−1 ≥ −ε, Sε,2

j − Sj−1 ≤ ε

and such that (Sε,1, j), (Sε,2, j) are not type II arbitrage nodes. Then, (L(S,j))
holds at a node (S, j) if and only the node (S, j) is not an arbitrage node of type II.

Proof. If (S, j) is a type II arbitrage node, then L(S,j) fails by Theorem 2.9. Con-
versely, suppose that (S, j) is not an arbitrage node of type II. We aim at showing
that L(S,j) holds. By Lemma C.1, we may assume that there are no portfolio
restrictions. In this situation, GRFP implies that RFP holds at every node by
Lemma C.3, and, in particular, at the fixed node (S, j). Lemma C.2 now allows
one to move from the original trajectory set to its completion S, which, of course,
is trajectorially complete. The condition on the arbitrage nodes of type II, which
is imposed in Theorem 3.10 for S, is inherited by S thanks to Remark 3.6. Sum-
marizing the foregoing, the problem has been reduced to a complete trajectory set
without portfolio constraints, which is covered by [5, Corollary 3.14]. □

Corollary 3.11 (see proof in Appendix C). (1) Suppose there are no portfolio
restrictions. Then, (L)-a.e. holds under the assumptions of Theorem 3.10.

(2) Under the standing assumptions (H.1)–(H.4), assume that S satisfies GRFP
and has no-arbitrage nodes of type II. Then, (L(S,j)) holds at every node (S, j).

The role of the reversed Fatou property for the validity of these results is illus-
trated in Examples F.1–F.2 in Appendix F.

3.3. König’s condition. As illustrated by Example 2.16, the (L)-a.e. formulation
of Leinert’s condition is not sufficient to guarantee the characterization of replicable
claims as integrable functions. Therefore, we now discuss criteria to check that the
stronger continuity condition of König holds.

The next result provides a relation between both continuity conditions. It relies
on the following additional property of aggregation of portfolios:
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(H.5) For any sequence {Hm}m≥1 in H(S,j), the portfolio H given by

Hi(S̃) :=
{∑∞

m=1 H
m
i (S̃) if the series is convergent in R,

0 otherwise

belongs to H(S,j).

Theorem 3.12. Suppose Leinert’s condition (L(S,j)) holds at every node (S, j).
Then, König’s condition (K(S,j)) is also valid at every node (S, j) under each of
the following additional assumptions:

(1) There are no portfolio restrictions.
(2) The portfolios satisfy (H.1)–(H.5) and the trajectory set does not have any

arbitrage nodes.

Sketch of the proof. A proof in the case (1) is provided in [6]; see their Theorem 5.1.
It consists of two key steps. In the first step it is shown that all involved portfolios
may be assumed to have the same finite maturity. The corresponding manipulations
make use of (H.3) and (H.4) only. In the second step, a superposition of countably
many portfolios is accumulated. This step requires (H.5) and Lemma C.5. In the
absence of arbitrage nodes of type I, the technical ramifications of the proof of [6,
Theorem 5.1] involving (null) sets Nn and a random time τ become trivial, and so
the identical proof works for case (2) as well. □

Combining this theorem with Theorem 3.10 and Corollary 3.11, we obtain the
following criteria.

Corollary 3.13 (see proof in Appendix C). (1) Suppose (H.1)–(H.5), the global
reversed Fatou property GRFP, and that the trajectory set does not have any arbi-
trage nodes. Then, (K(S,j)) holds at every node (S, j).

(2) Suppose there are no portfolio restrictions, GRFP is satisfied and the trajec-
tory set does not have any arbitrage nodes of type II. Then, (K(S,j)) holds at every
node (S, j).

Example 3.14. Suppose the trajectory set is closed against stopping, in the
sense that for every trajectory S ∈ S and k ≥ 0, the stopped trajectory S[k] ≡
(Sj∧k)j≥0 = (S1, . . . , Sk−1, Sk, Sk, . . .) also belongs to S. Note that the analogue
of this property is often imposed in the continuous-time pathwise approach [3, 2].
Under this assumption, for every node (S, j) and every f ∈ E(S,j), f(S[j]) = Ijf(S).
Hence, if there are f0 ∈ E(S,j) and fm ∈ E+

(S,j), m ≥ 1, such that
∑

m≥0 fm(S̃) ≥ 0
for every S̃ ∈ S(S,j), then, by choosing S̃ = S[j], we obtain

∑
j≥0 Ijf(S) =∑

j≥0 f(S[j]) ≥ 0. Hence, σj(0)(S) ≥ 0, which, by Proposition 3.4, implies that
(L(S,j)) holds.

Thus, by Theorem 3.12, (K(S,j)) is also valid at every node (S, j), if the model
satisfies the portfolio restrictions (H.1)–(H.5) and has no-arbitrage nodes of type I
or if the model has no portfolio restrictions at all. For the sake of concreteness, let
us assume that all nodes are trinomial with one up-branch, one down-branch, and
one branch, which continues constantly. If S is the set of all those trajectories S
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passing through these nodes such that S eventually becomes constant (but the
time of the last up-move or down-move depends on S), then the model is clearly
trajectorially incomplete, but satisfies (K(S,j)) at every node (S, j).

4. Conditionally integrable functions and their characterization

In this section we study the space of conditionally integrable functions and,
in particular, prove a generalization of Theorem 2.14. Recall that the space Lσj

of conditionally integrable functions describes the payoffs of those financial deriva-
tives, for which the seller and buyer agree on a unique (finite) price by superhedging
arguments when the derivative is traded at time j. It is formally defined to be

Lσj
≡ {f : S → [−∞,∞] : σjf − σjf = 0 a.e.}.

Most results in this section will fix j ≥ 0 and assume property (Lj)-a.e. (introduced
in Definition 2.10). Property (Kj)-a.e. (see Definition 2.13) will only be required
in some of the results.

Due to the fact that by Corollary 3.5 item (1), 0 ≤ σjf(S) + σj(−f)(S) =
σjf(S)−σjf(S) holds a.e., we have f ∈ Lσj

if and only if σjf−σjf ≤ 0 a.e., which,
in turn, implies σjf ≤ σjf a.e. Moreover, the statements are equivalent if and only
if σjf and σjf are finite a.e. Therefore, f ∈ Lσj

implies −∞ < σjf(S) < ∞ and
−∞ < σjf(S) < ∞ , each set of inequalities holding a.e. Proposition 3.3 item (9)
implies that for each such S we have −∞ < f < ∞ a.e. on S(S,j). For the special
case of j = 0, σ0f − σ0f ≤ 0 a.e. if and only if σ0f(S0) − σ0f(S0) ≤ 0.

A function f ∈ Lσj
will be called (conditionally) integrable. For such a function

we set the conditional integral notation:∫
j

f ≡ σjf ;

this defines conditional integrals everywhere on S and avoids the introduction of
classes of equivalence of functions defined a.e. That being said, we emphasize that
for f ∈ Lσj

, −∞ <
∫

j
f(S) = σjf(S) = σjf(S) < ∞ a.e. We also write∫

j

f
.= σjf, where we will use .= to denote equality a.e.

We will mix the equivalent uses of a.e. and .= as we see most convenient for display
purposes. The case j = 0 is denoted by

∫
f ≡

∫
0 f , which is a constant defined

everywhere on S.
The next two results (Proposition 4.1 and Theorem 4.3) are known for the

unconditional non-lattice integral, see [16]. Their generalization to the conditional
integrals requires to take care of the global null sets that feature in the definition
of conditional integrability.
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Proposition 4.1 (see proof in Appendix D; cf. König’s Behauptung 2.1 in [16]).
Given j ≥ 0, assume that property (Lj)-a.e. holds. Then,

(1) Ej ⊂ Lσj
.

(2) If f ∈ Lσj
and [f = g a.e. at (S, j)] holds a.e., then g ∈ Lσj

and
∫

j
f
.=

∫
j
g.

(3) Consider f ∈ Lσj
and c ∈ R. Then cf ∈ Lσj

,
∫

j
cf = c

∫
j
f if c > 0, and∫

j
cf = (−c)

∫
j
(−f) .= c

∫
j
f if c ≤ 0.

(4) If f, g ∈ Lσj
, then f + g ∈ Lσj

and
∫

j
(f + g) .=

∫
j
f +

∫
j
g.

Remark 4.2. If [g = 0 a.e. at (S, j)] holds a.e., item (2) above gives g ∈ Lσj
and∫

j
g
.= 0. The same argument also implies that |g|, g+, g− ∈ Lσj

and that all the
conditional integrals are zero a.e.

The next theorem provides an alternative description of integrable functions
which is closer to Lebesgue’s classical approach, as a closed space under the norm
∥ ∥j . The main hypothesis contains the qualifier ‘a.e.’, even if it were strengthened
to every S, the conclusion will still hold only a.e.
Theorem 4.3 (Cf. König’s Satz 2.9 in [16]). Given j ≥ 0, assume that property
(Lj)-a.e. holds and let f ∈ Q. If there exist {fn}n≥1 ⊂ Lσj

such that limn→∞ ∥f −
fn∥j = 0 a.e., then f ∈ Lσj

and limn→∞
∫

j
fn

.=
∫

j
f .

Proof. The following holds a.e.:
0 ≤ lim

n→∞
σj(|f − fn|) ≤ lim

n→∞
∥f − fn∥j = 0;

by Proposition 3.3 item (6) it follows that σjf ≤ σjfn +σj(|f −fn|) and σj(−f) ≤
σj(−fn) + σj(| − f + fn|). Moreover, σj(−fn) = −σjfn, because fn ∈ Lσj

. Thus,
by Corollary 3.5 item (1) (the latter valid because (Lj)-a.e. holds),

[0 ≤ σjf − σjf = σjf + σj(−f) ≤ 2σj(|f − fn|)] a.e.,
from which we obtain f ∈ Lσj

. From the assumption that (Lj)-a.e. holds, we can
rely on Proposition 4.1 item (4) and Corollary 3.5 item (2) to compute∣∣∣∣∫

j

f −
∫

j

fn

∣∣∣∣ .= |σj(f − fn)| ≤ σj(|f − fn|) −−−−→
n→∞

0 a.e.,

which implies that limn→∞
∫

j
fn

.=
∫

j
f . □

4.1. Characterization of conditional integrability. This section starts by in-
troducing the basic functions that are integrable and culminates in Theorem 4.15
that characterizes all possible integrable functions.
Definition 4.4. For j ≥ 0 given, define the following set of functions:

Mj ≡
{
v =

∞∑
m=1

fm, fm ∈ E+
j ∀m ≥ 1,

[ ∞∑
m=1

Ijfm < ∞ a.e.
]}
.

M ≡ M0 (denoted by M(I|E) in [16]). Moreover, for fixed (S, j) define

Mj(S) ≡
{
v =

∞∑
m=1

fm, fm ∈ E+
(S,j) ∀m ≥ 1,

∞∑
m=1

Ijfm(S) < ∞
}
.
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Therefore M0 = M0(S) is valid for all S. Observe that E+
j ⊂

⋂
S∈S Mj(S) ⊂

Mj . In particular, v ∈ Mj if and only if there exists F ⊂ S with null complement
such that v ∈

⋂
S∈F Mj(S).

Proposition 4.5 (see proof in Appendix D). Let v =
∑∞

m=1 fm, fm ∈ E+
(S,j) for

a given node (S, j) such that (L(S,j)) holds; then

σjv(S) = σjv(S) = Ijv(S) =
∑
m≥1

Ijfm(S). (4.1)

Therefore, if we assume that property (Lj)-a.e. holds, then Mj ⊆ L+
σj

and if v ∈
Mj, then

∫
j
v
.=

∑
m

∫
j
fm.

Moreover, if v ∈ Mj(S), for any ε > 0, there exist h ∈ E+
(S,j) and u ∈ Mj(S),

both depending on S and ε, satisfying v = h+ u and Iju(S) ≤ ε.

Remark 4.6. If f ∈ E(S,j) + Mj(S) − Mj(S) then, from the last result of Propo-
sition 4.5, for any ε > 0, f can be written as f = h+ v − u with h ∈ E(S,j), u, v ∈
Mj(S), and Iju(S), Ijv(S) ≤ ε. See Theorem 4.15.

Corollary 4.7 (see proof in Appendix D). Fix a node (S, j) such that (L(S,j))
holds and u, v ∈ Mj(S), h ∈ E(S,j). Then

(1) Ij(u+ αv)(S) = σj(u+ αv)(S) = σju(S) + ασjv(S) = Iju(S) + αIjv(S),
whenever α ≥ 0.

(2) σj(h+ v − u)(S) = σj(h+ v − u)(S) = Ijh(S) + Ijv(S) − Iju(S).
Therefore, if property (Lj)-a.e. holds, then Ej + Mj − Mj ⊂ Lσj

and∫
j

(h+ v − u) .=
∫

j

h+
∫

j

v −
∫

j

u. (4.2)

The remainder of the section introduces the key sets Lj which we prove satisfy
Lj ⊆ L+

σj
and so Lj − Lj ⊆ Lσj

. Under an strengthening of property (L(S,j)) we
also show that Lj = L+

σj
(see Theorem 4.15). We pursue some results involving Lj

and in that way gain some generality.

Definition 4.8 (Positive cone of integrable functions).

Lj ≡ {f : S → [0,∞] : the following holds a.e. in the variable S ∈ S:
[for all ε > 0 there exist u, v ∈ Mj(S) such that
f = v − u a.e. on S(S,j) and Iju(S) ≤ ε]}.

Notice that Lj is a positive cone that contains the non-negative null functions.
To check the latter claim let g ∈ P be a null function; it follows from item (5)
of Proposition 3.2 that Ij(|g|) = 0 a.e., i.e., [g = 0 a.e. on S(S,j)] holds a.e. in the
variable S. This shows that g ∈ Lj .

The set LK
j , introduced next, will be shown to be the set of integrable functions

in Theorem 4.15.

Rev. Un. Mat. Argentina, Vol. 68, No. 2 (2025)



654 C. BENDER, S. E. FERRANDO, AND A. L. GONZALEZ

Definition 4.9.
LK

j ≡ {f : S → [−∞,∞] : the following holds a.e. in the variable S ∈ S:
[for all ε > 0 there exist u, v ∈ Mj(S), h ∈ E(S,j),

f = (h+ v − u) a.e. on S(S,j) and Iju(S) ≤ ε, Ijv(S) ≤ ε]}.

Corollary 4.10 (see proof in Appendix D). Assume that property (Lj)-a.e. holds.
Then,

Lj ⊆ L+
σj

and LK
j ⊆ Lσj

.

From Lj ⊆ L+
σj

, it follows that Lj − Lj ⊆ Lσj
given that the latter is a vector

space. As we pointed out, Lj is a positive cone so αLj + βLj ⊆ Lσj
, α, β ∈ R,

follows.
We take the opportunity to also introduce analogous sets LG

j ,L
K,G
j ; both defi-

nitions have a global characteristic to them. These sets are further used in Theo-
rem 4.15 and Proposition E.2.

Definition 4.11 (Global versions of Lj and LK
j ).

LG
j ≡

{
f : S → [0,∞] : for each ε > 0 there exist u, v ∈ Mj

such that the following holds a.e. in S:
[f = v − u a.e. on S(S,j) and Iju(S) ≤ ε, Ijv(S) < ∞]

}
.

LK,G
j ≡

{
f : S → [−∞,∞] : for each ε > 0 there exist u, v,∈ Mj , h ∈ Ej

such that the following holds a.e. in S:
[f = h+ v − u a.e. on S(S,j) and Iju(S), Ijv(S) ≤ ε]

}
.

The key role of König’s condition is that it enforces consistency between I and
σ on non-negative functions. The following proposition is a nodewise version of a
result in [16].

Proposition 4.12 (see proof in Appendix D). Fix a node (S, j), j ≥ 0. The
following assertions are equivalent:

(1) (K(S,j)).
(2) Ijf(S) = σjf(S) for every f ∈ P .
(3) Ijf

−(S) = σjf
−(S) for every f ∈ E(S,j).

As a direct corollary to the proof of Proposition 4.12 we derive an a.e. version
of the implication (1) =⇒ (2) above (see Corollary 4.14). The a.e. notion involved
is a key assumption in Theorem 4.15 and it is introduced next.

Definition 4.13 ((σj = Ij) a.e. uniformly). For a fixed j ≥ 0, we will say that
(σj = Ij) holds a.e. uniformly over P if there exists a null set K ⊆ S such that the
following holds:

[σjf(S) = Ij(f)(S) ∀f ∈ P and ∀S ∈ Kc].
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Corollary 4.14. If (Kj)-a.e. is in force, then (σj = Ij) holds a.e. uniformly
over P , i.e., there is a global null set K′ (independent of f) such that σjf(S) =
Ijf(S) for every f ∈ P and S /∈ K′.

The proof of Theorem 4.15 below follows the steps of an analogous result from [16,
Satz 2.4] but taking care of the a.e. condition in the definition of conditional in-
tegrable functions. The theorem relies on the sets LG

j and LK,G
j which were in-

troduced in Definition 4.11. Since one can easily check that LK,G
j coincides with

the space Rj of functions which can be replicated by generalized portfolios, Theo-
rem 2.14 is a special case of the following result.

Theorem 4.15 (Characterization of integrable functions). Assume that (Lj)-a.e.
holds and that (σj = Ij) holds a.e. uniformly over P . Then

L+
σj

= Lj = LG
j , (4.3)

Lσj
= LK

j = LK,G
j . (4.4)

Proof. The second equalities, in both displays above, are proven in Proposition E.2
and are reproduced here for emphasis. The inclusions Lj ⊆ L+

σj
and LK

j ⊆ Lσj
are

established in Corollary 4.10. All these results only require the validity of (Lj)-a.e.;
the hypothesis that (σj = Ij) holds a.e. uniformly over P is only used to establish
the remaining two inclusions.

To prove the inclusion L+
σj

⊆ Lj in (4.3), let f ∈ L+
σj

and ε > 0. For m ≥ 1,
choose εm > 0 such that ε =

∑
m≥1 εm. Define also Nf = {S ∈ S : σjf(S) −

σjf(S) ̸= 0}, which is a null set given that f ∈ Lσj
. Let NK denote the null

set related to our assumption that (σj = Ij) holds a.e. uniformly over P (see
Corollary 4.14). Finally, let NL denote the null set related to our assumption that
(Lj)-a.e. holds.

Until we establish the mentioned inclusion, in what follows we reserve the nota-
tion S to mean that S ∈ N c

f ∩ N c
K ∩ N c

L and show that for each such S there are
sequences of functions (hm)m≥1 in Mj(S) and (fm)m≥1 in L+

σj
with σjfm(S) ≤ εm

such that fm = hm − fm−1 on S(S,j).
Rename f0 = f ; from our choice of S, 0 ≤ Ijf0(S) = σjf0(S) < ∞, where

the last inequality follows from Lemma D.1. By definition of Ij , there exists h1 ∈
Mj(S) with

f0 ≤ h1 on S(S,j) and Ijh1(S) ≤ Ijf0(S) + ε1. (4.5)

Define f1 ≡ h1 −f0 ≥ 0 on each S(S,j), and f1(Ŝ) ≡ 0 whenever Ŝ ∈ Nf ∪NK ∪NL.
This defines f1 on S. For the set of trajectories S under consideration, we have
σjh1(S) − σjh1(S) = 0, which follows from the fact that σjh1(S) = Ijh1(S) < ∞
from Proposition 4.5, and also σjf0(S) −σjf0(S) = 0. Then, applying Lemma D.1
to f0 and h1 we obtain σjf1(S) − σjf1(S) = 0 and so this equality holds for all
S ∈ N c

f ∩ N c
K ∩ N c

L, in particular a.e. Noticing that f1 ≥ 0 we have then shown
that f1 ∈ L+

σj
. By means of Lemma D.1, the validity of σj = Ij a.e. and uniformly
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over P , and (4.5), we derive
σjf1(S) = σjh1(S) − σjf0(S) ≤ Ijf0(S) + ε1 − Ijf0(S) = ε1.

For m ≥ 2 we can then proceed inductively. Whenever fm−1 ∈ L+
σj

has been
constructed satisfying σjfm−1(S)−σjfm−1(S) = 0 and σjfm−1(S) ≤ εm−1, it then
follows from 0 ≤ Ijfm−1(S) = σjfm−1(S) < ∞ that there exist hm ∈ Mj(S) with

fm−1 ≤ hm on S(S,j) and Ijhm(S) ≤ Ijfm−1(S) + εm. (4.6)
We can then define
fm ≡ hm−fm−1 on each S(S,j), and f1(Ŝ) ≡ 0 whenever Ŝ ∈ Nf ∪NK∪NL; (4.7)

this defines fm on S. As we have argued for the case of f1, it follows that σjfm(S)−
σjfm(S) = 0 for all S under consideration, fm ∈ L+

σj
and σjfm(S) ≤ εm.

Observing that
∑

m≥1 fm ≥ 0 and

σj

[ ∑
m≥1

fm

]
(S) = Ij

[ ∑
m≥1

fm

]
(S) ≤

∑
m≥1

Ijfm(S) < ∞,

then by Proposition 3.3 item (8),
∑

m≥1 fm < ∞ a.e. on S(S,j), from where
limm→∞ fm = 0 a.e. on S(S,j).

On the other hand, from (4.7), hm = fm−1 + fm (if fm−1(Ŝ) = ∞ for some
Ŝ ∈ S, it must be, from (4.6), that hm(Ŝ) = ∞). Then, using Lemma D.1, for
m ≥ 2,

Ijhm(S) = Ij(fm + fm−1)(S) = σj(fm + fm−1)(S)
= σjfm−1(S) + σjfm(S) < εm−1 + εm.

Set u =
∑

m≥1 h2m and v =
∑

m≥0 h2m+1; then u, v ∈ Mj(S), since

∥u∥j(S) = Iju(S) ≤ Ij

[ ∑
m≥1

h2m

]
(S) <

∑
m≥1

(ε2m−1 + ε2m) = ε,

and
Ijv(S) ≤

∑
m≥0

Ijh2m+1(S) < Ijf + ε1 +
∑
m≥1

(ε2m + ε2m+1) = Ijf + ε < ∞.

Thus, on S(S,j), for n ≥ 1
n∑

m=1
(−1)m−1hm =

n∑
m=1

((−1)m−1fm−1 − (−1)mfm) = f − (−1)nfn,

from where

f =
2n∑

m=1
(−1)m−1hm + f2n =

n−1∑
m=0

h2m+1 −
n∑

m=1
h2m + f2n.

Finally, taking the limit n → ∞, it follows that f = v−u a.e. on S(S,j) with Iu(S) ≤
ε, u, v ∈ Mj(S), and these properties hold a.e. in S given that Nf ∪NK ∪NL is a
null set. It then follows that f ∈ Lj .
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In order to establish Lσj
⊆ LK

j in (4.4), let f ∈ Lσj
and so Nf ≡ {S ∈ S :

σjf(S) − σjf(S) ̸= 0} is a null set. For the rest of the proof we will consider
S ∈ N c

1 ∩N c
K ∩NL (where we rely on notation introduced in the preceding part of

the proof). In particular, −∞ < σjf(S) < ∞; therefore, there exist h̃ ∈ E(S,j), w̃ ∈
Mj(S) such that f ≤ h̃ + w̃ on S(S,j), with Ij h̃(S) + Ijw̃(S) ≤ σjf(S) + ε. Set
f̃ ≡ h̃ + w̃ − f on each S(S,j), with S ∈ N c

1 ∩ N c
K ∩ NL, and f̃ = 0 otherwise. By

Proposition 3.4 item (4), σj h̃(S) + σj(−h̃)(S) = 0. Then, reasoning as in the case
of fm before, σj f̃(S) − σj f̃(S) = 0; in particular, f̃ ∈ L+

σj
.

So, by (4.3), f̃ = ṽ − ũ a.e. on S(S,j), with ũ, ṽ ∈ Mj(S) and ∥ũ∥j(S) < ε.
Consequently, f = h̃+ w̃ + ũ− ṽ a.e. on S(S,j).

Then, by Proposition 4.5, w̃ + ũ = h̃1 + ṽ1, ṽ = h̃2 + ṽ2, with h̃1, h̃2 ∈ E+
(S,j),

ṽ1, ṽ2 ∈ M(S,j) such that Ij ṽ1(S), Ij ṽ2(S) < ε, and

f = h̃+ h̃1 − h̃2 + ṽ1 − ṽ2 a.e. on S(S,j).

Notice that h ≡ (h̃+ h̃1 − h̃2) ∈ E(S,j), and so we have established that f ∈ LK
j . □

The next theorem provides a norm-closure characterization of Lσj
.

Theorem 4.16. Assume that (Lj)-a.e. holds. Then,
(a) σj is linear, continuous and positive, in an a.e. manner, on Lσj

.
Furthermore, assume that (σj = Ij) holds a.e. uniformly over P . Then,

(1) f ∈ Lσj
if and only if there is a sequence {hn}n∈N in Ej such that

lim
n→∞

∥f − hn∥j = 0 a.e.

(2) f ∈ L+
σj

if and only if there is a sequence {hn}n∈N in E+
j such that

lim
n→∞

∥f − hn∥j = 0 a.e.

Proof. Linearity in item (a) follows from Proposition 4.1; continuity and positivity,
from Corollary 3.5. The statements are qualified by ‘a.e.’ given our hypothesis
(Lj)-a.e.

For item (1), take f ∈ Lσj
; then, by Theorem 4.15, for any n ≥ 1 there exist hn ∈

Ej , un, vn ∈ Mj such that f = hn+vn−un a.e. on S(S,j), and Ijun(S), Ijvn(S) < 1
n

for almost every S. Observe that f − hn = 1Ac [vn − un] + 1A[f − hn] on S(S,j)
holds, where A = {f ̸= hn + vn − un} is a conditional null set on (S, j) for almost
every S ∈ S. This implies that

|f − hn| ≤ 1Ac |vn − un| + 1A|f − hn|,

from where
∥f − hn∥j ≤ 2

n
a.e.

Here, Proposition 3.2 item (3) was used because 1Ac |vn − un| = |vn − un| a.e. on
S(S,j). Hence, limn→∞ ∥f−hn∥j = 0 a.e. The converse implication is an immediate
consequence of Theorem 4.3.
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The proof of item (2) is similar: Any f ∈ L+
σj

can be written as f = vn − un

a.e. on S(S,j), un, vn ∈ Mj , with Ijun(S) < 1
n for almost every S. Also, from

Proposition 4.5, vn = hn + ṽn with hn ∈ E+
j , ṽn ∈ Mj and Ij ṽn(S) < 1

n . Then,
the argument for item (1) can be repeated almost verbatim. □

The classical Beppo-Levi and monotone convergence theorems hold in Lσj
.

Theorem 4.17 (Beppo-Levi). Assume (Lj)-a.e. holds and let {fn}n≥1 ⊂ Lσj
be

such that
∑

n≥1 ∥fn∥j(S) < ∞ a.e. Define

N ≡ {S ∈ S |
∞∑

n=1
fn(S) does not converge in R},

f(S) ≡

{∑∞
n=1 fn(S), S ∈ S \N ;

0, S ∈ N.

Then, N is a conditional null set on (S, j) for a.e. S ∈ S and limk→0 ∥f −∑k
n=1 fk∥j = 0 a.e. In particular, f ∈ Lσj

and∫
j

∑
n≥1

fn
.=

∑
n≥1

∫
j

fn.

Proof. Denote by Ñ a global null set such that
∑

n≥1 ∥fn∥j(S) < ∞ and (L(S,j))
holds for every S /∈ Ñ . Applying the generalized Beppo-Levi theorem [17, p. 260]
to the elementary integral I(S,j), we observe that N is a conditional null set on
(S, j) and that limk→∞ ∥f −

∑k
n=1 fk∥j(S) = 0. This shows the first two claims.

The ‘in particular’ part then is an immediate consequence of Theorem 4.3 and the
linearity of the integral on Lσj

. □

Theorem 4.18 (Monotone Convergence Theorem). Assume that the following two
statements hold: (Lj)-a.e. and (σj = Ij) a.e. uniformly over P . Let {fn}n≥1 ⊆
Lσj

, fn ↗ f ∈ Q. If limn→∞
∫

j
fn ≤ C < ∞ a.e. (for some constant C), then

∥f − fn∥j → 0 a.e., f ∈ Lσj
and

∫
j
f
.= limn→∞

∫
j
fn.

Proof. Define, for n ≥ 1, gn ≡ fn − fn−1 ≥ 0, with f0 ≡ 0; then, for a.e. S ∈ S,
m∑

n=1
∥gn∥j =

m∑
n=1

σjgn = σjfm+1 =
∫

j

fm+1 ≤ C < ∞ a.e. on S(S,j).

The result then follows from Theorem 4.17. □

Appendix A. On the role of zero-neutral nodes

In this appendix, we discuss the importance of the concept of zero-neutral nodes
for the elementary integrals I(S,j).

We rely on the following simple lemma (see [13, Lemma 1]) that gives a basic
procedure to construct particularly useful trajectories that move in a contrarian
way, at each node (Sn, i), to a collection of bets Fi(Sn).
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Lemma A.1. Assume every node in S is 0-neutral, n0 ≥ 0, and let F = {Fi}i≥n0

be a sequence of non-anticipative functions and ε > 0. Then, for any S ∈ S, there
exists a sequence of trajectories {Sn}n≥n0 with Sn0 = S such that for every n > n0,
Sn ∈ S(Sn−1,n−1) ⊂ S(S,n0) and

Fi(Sn)∆iS
n <

ε

2i+1 , n0 ≤ i ≤ n− 1.

In particular,
n−1∑
i=n0

Fi(Sn)∆iS
n <

n−1∑
i=n0

ε

2i+1 .

Remark A.2. If at any point in the construction, a node (Sn, n) is an arbitrage
node of type I, we could choose, without loss of generality, Sn+1 ∈ S(Sn,n) such
that ∆nS

n+1 = Sn+1
n+1 − Sn+1

n = 0.

Corollary A.3. Assume every node in S is 0-neutral and let F,G be sequences of
non-anticipative functions. The following holds at an arbitrary node (S, j):

• If ΠV,F
j,n ≥ 0 on S(S,j) then ΠV,F

j,k (S) ≥ 0 on S(S,j) for all j ≤ k ≤ n, and so
V (S) ≥ 0 as well. In particular, this is valid for ΠV,F

j,n ∈ Ej.
• If ΠU,G

j,m ≤ ΠV,F
j,n then U(S) ≤ V (S). Consequently Ij is well defined, i.e.,

if f = ΠV f ,Hf

j,nf , g = ΠV g,Hg

j,ng ∈ Ej and f |S(S,j) = g|S(S,j) , then Ijf(S) =
V f (S) = V g(S) = Ijg(S) (see also [13, Proposition 4]).

Proof. We argue explicitly only for the first item, as the second follows from it.
Assume that for some j ≤ k ≤ n there exists S̃ ∈ S(S,j) such that ΠV,F

j,k (S̃) =
δ < 0. From Lemma A.1, for n0 = k, S̃, and ε = − δ

2 there exists Sn ∈ S(S̃,k)

such that
∑n−1

i=k Fi(Sn)∆iS
n < − δ

2 , which then leads to the contradiction 0 ≤
V (S̃) +

∑n−1
i=j Fi(Sn)∆iS

n ≤ δ
2 < 0. □

The previous corollary implies the following: Fix a node (S, j). If f = g (on
S(S,j)) for some f = ΠV f ,Hf

j,nf , g = ΠV g,Hg

j,ng ∈ E(S,j), then I(S,j)f = Vf (S) = Vg(S) =
I(S,j)f . Hence, I(S,j) is well defined. Repeating the same argument with ‘≤’ instead
of ‘=’ yields the isotony of I(S,j). The linearity of the map ΠV,H

j,n → V is obvious
(once it has been shown to be well defined).

Hence, I(S,j) is a well-defined, linear, isotone operator for every node (S, j) if
every node is zero-neutral.

Remark A.4. Suppose a node (S, j) fails to be zero-neutral. Let us assume
without loss of generality that there is an ε > 0 such that S̃j+1 − Sj > ε for every
S̃ ∈ S(S,j). Consider ΠV,F

j,n ∈ E(S,j) with n = j + 1, Fj = 1, Fi = 0 for i > j and
V = −ε/2. Then, ΠV,F

j,n ≥ ε/2 on S(S,j). Hence, I(S,j) cannot be a well-defined,
linear, and isotone operator.
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Appendix B. Proofs for Subsection 3.1

In this appendix, we provide the proofs for the results stated in Subsection 3.1.

Proof of Proposition 3.1. We only provide the proof of countable subadditivity.
We may assume that

∑
k≥1 Ijgk(S) < ∞, which leads to Ijgk(S) < ∞ for

k ≥ 1. Therefore, for a fixed ε > 0 and for any k ≥ 1, by definition of Ij there
exist Hm,k ∈ H(S,j) and V m,k ∈ R, m ≥ 1, such that

gk(S̃) ≤
∞∑

m=1

[
V m,k +

nm−1∑
i=j

Hm,k
i (S̃)∆iS̃

]
∀ S̃ ∈ S(S,j),

with

V m,k +
nm−1∑

i=j

Hm,k
i (S̃)∆iS̃ ≥ 0 ∀ S̃ ∈ S(S,j), n ≥ j,

and
∞∑

m=1
V m,k ≤ Ijgk(S) + ε

2k
.

Then
∞∑

k=1
gk(S̃) ≤

∞∑
k=1

∞∑
m=1

[
V m,k +

nm−1∑
i=j

Hm,k
i (S̃)∆iS̃

]
∀ S̃ ∈ S(S,j),

noticing that the double sum of non-negative terms can be reordered into a single
sum, we can then deduce that

Ijg(S) ≤
∞∑

k=1

∞∑
m=1

V m,k ≤
∞∑

k=1
Ijgk(S) + ε. □

Proof of Proposition 3.2. (1) Assume ∥g∥j(S) = 0. Consider A = {S̃ ∈ S(S,j) :
g(S̃) ̸= 0}. From the inequality 1A(S̃) ≤

∑
k≥1 |g(S̃)|, it follows that ∥1A∥j(S) ≤∑

k≥1 ∥g∥j(S) = 0. Therefore, A is a conditionally null set at (S, j) and so g(S̃) = 0
holds conditionally a.e. at (S, j).

For the converse of (1), by assumption, there exists B ⊆ S(S,j) such that
∥1B∥j(S) = 0 and g(S̃) = 0 ∀S̃ ∈ S(S,j)\B. Given that |g(S̃)| ≤

∑
k≥1 1B(S̃) ∀S̃ ∈

S(S,j), we obtain ∥g∥j(S) = 0.

(2) Let A ≡ {S̃ ∈ S(S,j) : g(S̃) = ∞}. Then n1A(S̃) ≤ |g(S̃)| ∀S̃ ∈ S(S,j) ∀n ≥ 1,
thus n∥1A∥j(S) ≤ ∥g∥j(S) and so ∥1A∥j(S) = 0.

(3) Let N ≡ {S̃ ∈ S(S,j) : |f(S̃)| > |g(S̃)|}. Then |f |(S̃) ≤ |g|(S̃)+
∑

m≥1 1N (S̃)
for S̃ ∈ S(S,j). Therefore,

∥f∥j(S) = Ij |f |(S) ≤ Ij |g|(S) + Ij

( ∑
m≥1

1N

)
(S) = Ij |g|(S) = ∥g∥j(S).

(4) Follows from the countable subadditivity of Ij .
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(5) Assume that f ≤
∑

m≥1 fm, with fm = ΠV m,Hm

j,nm
∈ E+

j , n ≥ j, m ≥ 1. Since
also fm ∈ E+

k , n ≥ j, m ≥ 1, it follows that for any S ∈ S

Ikf(S) ≤
∑
m≥1

(
V m(S) +

k−1∑
i=j

Hm
i (S)∆iS

)
=

∑
m≥1

Ikfm(S).

Since Ikfm ∈ E+
j , m ≥ 1, and V m(S) = V m(S0, . . . , Sj), it follows that Ij [Ikf ](S) ≤∑

m≥0 V
m(S) and consequently

Ij [Ikf ] ≤ Ijf. (B.1)

Assume now that g ∈ Q is conditionally null at S(S,j), i.e., Ij(|g|)(S) = 0. It then
follows from (B.1) and item (1) that Ik(|g|) = 0 a.e. on S(S,j). □

Proof of Proposition 3.3. (1) follows from the definitions, and (2) is clear by taking
f0 = 0.

For (3), by taking f0 = f and fm = 0 for m ≥ 1, the result follows.
To establish (4), notice that f ≤ g a.e. on S(S,j) allows us to write f(S̃) ≤

g(S̃) + ∞ 1N (S̃) for all S̃ ∈ S(S,j) with N ⊆ S(S,j) and Ij1N (S) = 0. Therefore
σjf(S) ≤ σjg(S) + σj(∞ 1N )(S) ≤ σjg(S) + Ij(∞ 1N )(S) ≤ σjg(S).

(5) Assume gf(S̃) ≤
∑

m≥0 ΠV m,Hm

j,nm
(S̃), S̃ ∈ S(S,j), with ΠV 0,H0

j,n0
∈ E(S,j) and,

for m ≥ 1, ΠV m,Hm

j,nm
∈ E+

(S,j). For each S̃ ∈ S(S,j) and m ≥ 0, define

Um(S̃) = V m

g(S) and Gm
i (S̃) = Hm

i (S̃)
g(S) for i ≥ j.

It follows that f(S̃) ≤
∑

ΠUm,Gm

j,nm
(S̃), S̃ ∈ S(S,j) with ΠU0,G0

j,n0
∈ E(S,j), and for

m ≥ 1, ΠUm,Gm

j,nm
∈ E+

(S,j), n ≥ j. Thus

σjf(S) ≤ σj [gf ](S)
g(S) .

The reverse inequality follows similarly.
(6) Observe that f ≤ |f − g| + g (since f(Ŝ) = ∞ implies |f − g|(Ŝ) = ∞), from

which (6) follows.
(7) Since σj0 ≤ 0, assume that there exists at least some S ∈ S satisfying

σj0(S) < 0. Therefore, there exist f̃0 = ΠṼ 0,H̃0

j,ñ0
∈ E(S,j) and, for m ≥ 1, f̃m =

ΠṼ m,H̃m

j,ñm
∈ E+

(S,j), such that 0 ≤
∑

m≥0 f̃m(S̃) for any S̃ ∈ S(S,j) and
∑

m≥0 Ṽ
m =

r < 0.
Consider now f ∈ Q. If there exist f0 = ΠV 0,H0

j,n0
∈ E(S,j) and fm = ΠV m,Hm

j,nm
∈

E+
(S,j) for m ≥ 1, such that f(S̃) ≤

∑
m≥0 fm(S̃) for any S̃ ∈ S(S,j) with

∑
m≥0 V

m

finite, then (since also f(S̃) ≤
∑

m≥0[fm(S̃) + γf̃m(S̃)] for any given γ > 0)

σjf(S) ≤
∑
m≥0

(V m + γṼ m) =
∑
m≥0

V m + γr,

thus σjf(S) = −∞. On the other hand, if such a family of functions fm does not
exist, σjf(S) = ∞.
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(8) Let A = {Ŝ ∈ S(S,j) : f(Ŝ) = ∞} and assume that σjf(S) < ∞. There
exist f0 = ΠV 0,H0

j,n0
∈ E(S,j), and for m ≥ 1, fm = ΠV m,Hm

j,nm
∈ E+

(S,j), n ≥ j, such that
f(S̃) ≤

∑
m≥0 fm(S̃) for any S̃ ∈ S(S,j) and∑

m≥0
V m < σjf(S) + 1.

For Ŝ ∈ A we have that ∞ = f(Ŝ) ≤
∑

m≥1 fm(Ŝ), because |f0| < ∞. Thus, for
any n > 0 and S̃ ∈ S(S,j),

n1A(S̃) ≤
∑
m≥1

fm(S̃).

From this it follows that

n∥1A∥j(S) ≤
∑
m≥1

V m < ∞.

(9) From hypothesis 0 = σj0 ≤ σjf(S) + σj(−f)(S), the two terms in the right
hand side being finite by hypothesis, we can then conclude that −∞ < σj(−f)(S),
−∞ < σjf(S). The last statement follows from item (8). □

Proof of Proposition 3.4. (2) follows from (1) as explained below.
Let f ∈ E(S,j) and fm = ΠV m,Hm

j,nm
∈ E+

(S,j) such that f ≤
∑

m≥1 fm on S(S,j).
Then 0 ≤ −f+

∑
m≥1 fm on S(S,j), thus (taking f0 ≡ −f ∈ E(S,j)), by the definition

σj , 0 = σj(0)(S) ≤ Ijf0(S)+
∑

m≥0 V
m(S), which leads to Ijf(S) ≤

∑
m≥1 V

m(S)
as required.

Assume now that continuity from below holds at (S, j), f ∈ E(S,j) and f+ ≤∑
m≥1 fm on S(S,j), and fm = ΠV m,Hm

j,nm
∈ E+

(S,j). Since f ≤ f+,

Ijf(S) ≤
∑
m≥1

V m(S),

which implies
Ijf(S) ≤ Ijf

+(S).
Let us now show that (3) implies (4). We follow the proof in [16, Behaup-

tung 1.9], but here its condition (∗) on page 449 is not needed. Fix f0 ∈ E(S,j) and
for m ≥ 1, fm = ΠV m,Hm

j,nm
∈ E+

(S,j) such that f ≤
∑

m≥0 fm on S(S,j); then from the
linearity of Ij and (3),

Ijf(S) − Ijf0(S) = Ij(f − f0)(S) ≤ Ij(f − f0)+(S).

Moreover, since (f − f0)+ ≤
∑

m≥1 fm on S(S,j) it follows that Ij(f − f0)+(S) ≤∑
m≥1 V

m(S). Therefore Ijf(S) ≤ Ijf0(S) +
∑

m≥0 V
m(S), so Ijf(S) ≤ σjf(S),

thus Ijf(S) = σjf(S) from Proposition 3.3 item (2). Consequently (4) holds, since
σjf(S) = −σj(−f)(S) = Ijf(S).

From (4) σj0(S) = Ij0(S) = 0.
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Let us now see that (L(S,j)) implies (5). Fix f ∈ E(S,j). Then by (L(S,j)),
Ijf(S) ≤ Ijf

+(S) ≤ Ij |f |(S) = ∥f∥j(S). The same analysis gives −Ijf(S) =
Ij [−f ](S) ≤ ∥f∥j(S), and so −∥f∥j(S) ≤ Ijf(S) ≤ ∥f∥j(S).

(6) follows from (5), since for f ∈ E+
(S,j), 0 ≤ Ijf(S) = |Ijf(S)| ≤ Ij |f |(S) =

Ijf(S) ≤ Ijf(S), where we relied on item (4) of Proposition 3.1 for the last in-
equality. □

Proof of Corollary 3.5. For item (1), 0 ≤ σjf(S) +σj(−f)(S) follows from Propo-
sition 3.3 item (1), and σj0(S) = 0. Furthermore, if |σj(−f)(S)| < ∞, it follows
that σjf(S) = −σj(−f)(S) ≤ σjf(S). While if σj(−f)(S) = ∞, then σjf(S) =
−∞ ≤ σjf(S). Finally, if σj(−f)(S) = −∞, then 0 ≤ σjf(S) +σj(−f)(S) implies
σjf(S) = ∞ = −σj(−f)(S) = σjf(S).

For item (2), from −|f | ≤ f ≤ |f | it follows that σj(−|f |) ≤ σjf ≤ σj |f |. From
item (1), −σj |f |(S) ≤ σj(−|f |)(S) and so |σjf(S)| ≤ σj |f |(S).

For item (3), from Proposition 3.3 item (2) we have 0 ≤ σj |f |(S) ≤ Ij |f |(S) = 0
(where the last equality holds by hypothesis). Then σjf(S) = 0 by item (2), and
the latter applied to −f gives σjf(S) = 0. Moreover, since also |f | = 0 a.e. on
S(S,j), the first chain of equalities hold. For the remaining statements, it is enough
to observe that 0 ≤ f−, f+ ≤ |f |, which gives f−, f+ = 0 a.e. on S(S,j) and so the
same previous reasoning that we used for f applies to f+ and f− as well.

For item (4), from Proposition 3.3 item (4), it follows that 0 = σj0(S) ≤ σjg(S).
□

Appendix C. Proofs for Subsections 3.2 and 3.3

C.1. Establishing property (L(S,j)). In this subsection, we provide the ramifi-
cations of the proof of Theorem 3.10 and the proof of Corollary 3.11. The key idea
is to reduce the statements step by step to the case of a complete trajectory set
and no portfolio restrictions.

Lemma C.1. Fix a node (S, j). If (L(S,j)) is satisfied in the case of no portfolio
restrictions, then so it is for any set of portfolio restrictions satisfying (H.1)–(H.4).

Proof. Let I(S,j) denote the operator in (2.4) with a set of portfolio restrictions
satisfying (H.1)–(H.4), and write I

′
(S,j) for the corresponding operator without

portfolio restrictions. Then, clearly I ′
(S,j)f ≤ I(S,j)f , because the minimization in

the former expression runs over a potentially larger set. Hence, (L(S,j)) without
portfolio restrictions implies (L(S,j)) with portfolio restrictions. □

Lemma C.2. Suppose the RFP (as per Definition 3.7) is satisfied at a node (S, j).
Then (L(S,j)) holds with respect to the original trajectory set S if (L(S,j)) holds with
respect to its completion S.

Proof. Let f0 ∈ E(S,j), fm ∈ E+
(S,j), m ≥ 1, such that

∑∞
m=0 fm(S̃) ≥ 0 for every

S̃ ∈ S(S,j) and
∑∞

m=0 I(S,j)fm < ∞. Let S̄ ∈ S(S,j) and {Sn}n≥0 be a sequence
as in (3.2). Note that the fm’s are also elementary functions with respect to the
completion S(S,j) and fm(S̄) = limn→∞ fm(Sn). Indeed, if fm = ΠV m,Hm

j,km
, then
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fm(Sn) becomes constant for n ≥ km. Note also that I(S,j)fm = V m in S(S,j) and
in S(S,j). In view of Proposition 3.4, we need to show that

∑∞
m=0 V

m ≥ 0. By
RFP,

∞∑
m=0

fm(S̄) =
∞∑

m=0
lim sup

n→∞
fm(Sn) ≥ lim sup

n→∞

∞∑
m=0

fm(Sn) ≥ 0.

Hence, the inequality
∑∞

m=0 fm(S̃) ≥ 0 extends from S̃ ∈ S(S,j) to S̃ ∈ S(S,j). As
(L(S,j)) is satisfied in S and S(S,j) = S(S,j), Proposition 3.4 implies

∑∞
m=0 V

m ≥ 0
and finishes the proof. □

The next lemma connects the global version of RFP to the local one.

Lemma C.3. Suppose there are no portfolio restrictions. If S satisfies GRFP,
then RFP holds at any node (S, j).

Proof. Fix an arbitrary node (S, j), j ≥ 0 and take S ∈ S(S,j); therefore, S ∈ S as
well. Consider gm(Ŝ) = Um(S) +

∑nm−1
i=j Gm

i (Ŝ) ∆iŜ, m ≥ 0, Ŝ ∈ S(S,j), such that
g0 ∈ E(S,j), gm ∈ E+

(S,j), m ≥ 1, and
∑

m≥1 U
m(S) < ∞.

Define, for all m ≥ 0 and S̃ ∈ S: (i) Hm
i (S̃) = 0 whenever 0 ≤ i < j; (ii) let

Hm
i = Gm

i on S(S,j) and Hm
i = 0 otherwise, whenever j ≤ i. Also set the constants

V m ≡ Um(S) for all m ≥ 0. Define fm(S̃) ≡ V m +
∑nm−1

i=0 Hm
i (S̃) ∆iS̃ for S̃ ∈ S

and notice fm ∈ E+, m ≥ 1, f0 ∈ E and
∑

m≥1 V
m < ∞.

Given that S satisfies the RFP and S ∈ S, for any n ≥ 0 there exists a sequence
{Sn}n≥0 ∈ S such that S = limn→∞ Sn, satisfying

∑
m≥0

lim sup
n→∞

nm−1∑
i=0

Hm
i (Sn) ∆iS

n ≥ lim sup
n→∞

∑
m≥0

nm−1∑
i=0

Hm
i (Sn) ∆iS

n. (C.1)

Define now S̃n ≡ Sj+n for n ≥ 0. Notice that since Sj+n ∈ S(S,j), we have
S̃n ∈ S(S,j), and S = limn→∞ S̃n; this follows because Sn = Sn

n = Sn+j
n = S̃n

n .
Using (C.1), we compute as follows:∑

m≥0
lim sup

n→∞

nm−1∑
i=j

Gm
i (S̃n)∆iS̃

n =
∑
m≥0

lim sup
n→∞

nm−1∑
i=j

Gm
i (Sn+j)∆iS

j+n

=
∑
m≥0

lim sup
n→∞

nm−1∑
i=0

Hm
i (Sn+j)∆iS

n+j =
∑
m≥0

lim sup
n→∞

nm−1∑
i=0

Hm
i (Sn)∆iS

n

≥ lim sup
n→∞

∑
m≥0

nm−1∑
i=0

Hm
i (Sn)∆iS

n = lim sup
n→∞

∑
m≥0

nm−1∑
i=0

Hm
i (Sj+n)∆iS

j+n

= lim sup
n→∞

∑
m≥0

nm−1∑
i=j

Gm
i (S̃n)∆iS̃

n.

This completes the proof. □
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Proof of Corollary 3.11. Item (2) is a direct consequence of Theorem 3.10, because
the model is assumed to have no-arbitrage nodes of type II. Item (1) can also be
reduced to Theorem 3.10. First, note that the initial node (S, 0) is not an arbitrage
node of type II by assumption, and hence condition (L) holds under the assumptions
of Theorem 3.10. In view of that theorem, it remains to show that

NII = {S ∈ S : (S, j) is a type II arbitrage node for some j ≥ 1}

is a global null set if there are no portfolio restrictions. Define f±,m, m ≥ 1, by

f±,m(S) =
m−1∑
j=0

±1A±
j

(S) · (Sj+1 − Sj)

for every S ∈ S, where

A±
j (S) =

{
(S, j) is a type II arbitrage node, ± (S̃j+1 − Sj) > 0 ∀ S̃ ∈ (S, j)

}
.

Then, fm = f+,m + f−,m ∈ E+
0 for every m ≥ 1, and

∑
m≥1 fm = ∞1NII . Hence

NII is a global null set. □

Remark C.4. Under assumptions (H.1)–(H.4) it cannot be guaranteed that the
functions fm constructed in the previous proof belong to E0; see Example 2.20,
where a similar issue arises at type I arbitrage nodes.

C.2. Establishing property (K(S,j)). In this subsection, we explain the ramifi-
cations of the proof of Theorem 3.12 and give the proof of Corollary 3.13.

The following lemma on the accumulation of portfolios is a variant of [13,
Lemma 3] and can be proved as in [13].

Lemma C.5 (Aggregation Lemma). Suppose all nodes are 0-neutral. For any
m ≥ 0, let Hm = {Hm

i }i≥j be sequences of non-anticipative functions on S, and
V m functions defined on S, depending for each S only on S0, . . . , Sj, j ≥ 0 fixed.
We fix a node (S, j) and assume that

ΠV m,Hm

j,n (S̃) = V m(S) +
nm−1∑

i=j

Hm
i (S̃)∆iS̃ ≥ 0, S̃ ∈ S(S,j), nm ≥ j

and
∑

m≥1 V
m(S) < ∞. Define, for any S̃ ∈ S(S,j) and k ≥ j,

Hk(S̃) ≡

{∑
m≥1 H

m
k (S̃) whenever this series is convergent in R,

0 otherwise.

Then, for any Ŝ ∈ S(S,j) satisfying

[if (Ŝ, p) is an arbitrage node, j ≤ p, then it is of type I and Ŝp+1 = Ŝp],

the following holds for all k such that j ≤ k:
∞∑

m=1
[Hm

k (Ŝ)∆kŜ] = Hk(Ŝ)∆kŜ
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and ∑
m≥1

Hm
k (Ŝ) converges whenever (Ŝ, k) is an up-down node.

Proof of Corollary 3.13. Under both sets of assumptions (1) or (2), the reversed
Fatou property is satisfied and the trajectory set has no-arbitrage nodes of type II.
Hence, by Theorem 3.10, (L(S,j)) holds at every node. It remains to apply Theo-
rem 3.12. □

Appendix D. Auxiliary results and proofs for Section 4

The next lemma considers the linearity of the integral at a point S where the
necessary integrability conditions hold. This shows that the property is local in
the specified sense.

Lemma D.1. Let f, g ∈ Q and consider a fixed node (S, j). If σjf(S) −σjf(S) =
0 = σjg(S) − σjg(S), then all the involved quantities are finite and

(a) σj(cf)(S) = cσjf(S) = cσjf(S) = σj(cf)(S) ∀c ∈ R,
Furthermore, if property (L(S,j)) holds,

(b) σj(f + g)(S) = σjf(S) + σjg(S) = σjf(S) + σjg(S) = σj(f + g)(S).

Proof. The finiteness claims follow from our conventions on computing with ±∞
(introduced right before Definition 2.6). We then see that the hypotheses imply
that σjf(S) = σjf(S) and σjg(S) = σjg(S).

For (a), if c = 0 or c = −1 the result is clear. For c > 0 it follows from item (5)
of Proposition 3.3, from where, if c < 0,

σj(cf)(S) = σj(−c(−f))(S) = −cσj(−f)(S) = cσjf(S).

Assertion (b) holds from
σjf(S) + σjg(S) = σjf(S) + σjg(S)

≤ σj [f + g](S) ≤ σj [f + g](S) ≤ σjf(S) + σjg(S),

where we relied on Corollary 3.5 item (1), for the second inequality. □

Remark D.2. For f ∈ Q and S ∈ S fixed, −∞ < σjf(S) = σjf(S) < ∞ is
equivalent to σjf(S) − σjf(S) = 0. This will be used implicitly several times to
apply Lemma D.1 or to justify that f ∈ Lσj

.

Proof of Proposition 4.1. Assertion (1) follows from Proposition 3.4 item (4).
For assertion (2), notice that Proposition 3.3 item (4) implies σjf(S) = σjg(S)

and this holds a.e. (in S). The same reasoning applied to −f,−g gives the validity
of σjf(S) = σjg(S) a.e. Given that σjf(S) − σjf(S) = 0 holds a.e., it follows
that σjg(S) − σjg(S) = 0 holds a.e. and g ∈ Lσj

is then established. Notice that∫
j
f ≡ σjf

.= σjg ≡
∫

j
g, which completes the proof of (2).

For (3), f ∈ Lσj
gives σjf − σjf

.= 0; then, (a) from Lemma D.1 implies
σj(cf) − σj(cf) .= 0. Hence cf ∈ Lσj

. For c ≥ 0,
∫

j
cf = c

∫
j
f follows from
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Proposition 3.3 item (5) and our standing assumption; on the other hand, if c ≤ 0,∫
j
cf = σjcf = |c|σj(−f) = −c

∫
j
(−f) = cσjf

.= cσjf = c
∫

j
f .

Finally, to establish (4), f, g ∈ Lσj
gives σjf − σjf

.= 0 and σjg − σjg
.= 0;

then (b) from Lemma D.1 implies σj(f + g) − σj(f + g) .= 0 and so (f + g) ∈ Lσj
.

Moreover, the same result also gives
∫

j
(f + g) = σj(f + g) .= σjf + σjg =

∫
j
f +∫

j
g. □

Proof of Proposition 4.5. We argue as follows, for fixed N ≥ 0:
N∑

m=1
σjfm(S) ≤ σj

( N∑
m=1

fm

)
(S) ≤ σjv(S) ≤ σjv(S)

≤ Ijv(S) ≤
∑
m≥1

Ijfm(S) ≤
∑
m≥1

Ijfm(S),
(D.1)

where the first inequality holds by superadditivity of σj , the second one by isotony,
the third one from Corollary 3.5 item (1), and the validity of (L(S,j)) and the rest
by Proposition 3.1.

From (D.1) we can conclude (4.1): item (4) in Proposition 3.4, valid when
(L(S,j)) holds, gives

∑N
m=1 Ijfm(S) =

∑N
m=1 σjfm(S); then (4.1) follows by taking

N → ∞.
From (4.1) and (Lj)-a.e., if v ∈ Mj then 0 ≤ σjv = σjv < ∞ a.e., thus

σjv−σjv = 0 a.e. and, being non-negative, v ∈ L+
σj

; consequently, the last equality
in (4.1) and Proposition 3.4 item (4) (both results valid a.e. as per property (Lj)-
a.e.) imply

∫
j
v
.=

∑
m

∫
j
fm.

Finally, since v =
∑∞

m=1 fm and
∑∞

m=1 Ijfm(S) < ∞, for a given ε > 0 there
exists mν such that

∑∞
m>mv

Ijfm(S) ≤ ε; then v = h+ u, where h =
∑mv

m=1 fm ∈
E+

(S,j) and u =
∑∞

m>mv
fm satisfies Iju(S) ≤

∑∞
m>mv

Ijfm(S) ≤ ε, hence u ∈
Mj(S). □

Proof of Corollary 4.7. Equality (4.1) in Proposition 4.5 implies the first and last
equalities in (1) given that u, v, u+αv ∈ Mj(S). The second equality in (1) follows
from Lemma D.1 by taking f ≡ u, g ≡ v; this result is applicable given that by
Proposition 4.5 and hypothesis 0 ≤ σju(S) = σju(S) < ∞, so σju(S)−σju(S) = 0
(similarly for v).

To derive (2), by Proposition 3.4 item (4) σjh(S) = σjh(S), and (4.1) in Propo-
sition 4.5 gives σju(S) = σju(S) and σjv(S) = σjv(S). Since in the three cases
the involved values are finite, h, v, u satisfy the hypothesis of Lemma D.1, from
where σj(h+v)(S) = σj(h+v)(S), so for the same reason h+v satisfies the referred
hypothesis. Consequently,

σj(h+ v − u)(S) = σj(h+ v)(S) − σju(S) = σjh(S) + σjv(S) − σju(S).
From where, by Proposition 3.4 item (4) and (4.1) in Proposition 4.5 again,

σj(h+ v − u)(S) = Ijh(S) + Ijv(S) − Iju(S) = σjh(S) + σjv(S) − σju(S).

Another use of Lemma D.1 gives the first equality in (2).
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The inclusion Ej + Mj − Mj ⊆ Lσj
, as well as (4.2), follow directly from (2)

(which holds a.e. given our assumption that (Lj)-a.e. holds) just proven and the
finiteness of the involved values. □

Proof of Corollary 4.10. For f ∈ Lj, property (Lj)-a.e. permits us to find a set
A ⊆ S, with null complement, such that f = v − u a.e. on S(S, j) and (L(S,j))
both hold for all S ∈ A. Let S ∈ A. By Proposition 3.3 item (4) and Corollary 4.7
item (2), it follows that

σjf(S) = σj [v − u](S) = σj [v − u](S) = σjf(S).

Moreover, since u, v ∈ Mj(S), again by Corollary 4.7 item (2),

|σj [v − u](S)| = |σj [v − u](S)| = |Ijv(S) − Iju(S)| < ∞.

Thus σjf − σjf = 0 a.e., and since f is non-negative by definition of Lj , we have
f ∈ L+

σj
.

σjf
.= σjf for f ∈ LK

j follows from Corollary 4.7. In particular, it follows that
LK

j ⊆ Lσj
.

To establish Lj − Lj ⊆ LK
j , consider f = f1 − f2 ∈ Lj − Lj . Let S ∈ S be such

that for all ε > 0 there exist u, v, u′, v′ in Mj(S) such that f1 = (v − u), f2 =
(v′ − u′) a.e. on S(S,j) with Iju(S) ≤ ε/2, Iju

′(S) ≤ ε/2. Given that Ijv(S) < ∞,
Ijv

′(S) < ∞ as well, we can assume (by relying on (2) from Proposition 3.2) that
u, v, u′, v′ are finite on the set where the equalities f1 = (v − u), f2 = (v′ − u′)
take place a.e. on S(S,j).

Writing v =
∑

k vk, v′ =
∑

k v
′
k, v′

k, vk ∈ E+
j , we can then find n1, n2 such

that Ij(
∑

k>n1
vk(S)) ≤ ε/2 and Ij(

∑
k>n2

v′
k(S)) ≤ ε/2. Let h1 ≡

∑n1
k=1 vk,

h2 ≡
∑n2

k=1 v
′
k. From the last assertion of Proposition 4.5 we can find h, h′ ∈ E+

j

and v1, v
′
1 ∈ Mj(S) such that v = h+ v1, v′ = h′ + v′

1 and Ijv1(S), Ijv
′
1(S) ≤ ε/2;

therefore f = ṽ − ũ + h a.e. on S(S,j), where ṽ ≡ v1 + u′, ũ ≡ v′
1 + u and h ≡

h1 − h2 ∈ Ej . Given that the above properties hold a.e. in the originally chosen
S ∈ S, we have established f ∈ LK

j . □

Proof of Proposition 4.12. (1) ⇒ (2). The proof is from [16, Behauptung 1.8],
but in the conditional setting. By Proposition 3.3 item (2), it is enough to prove
that Ijf ≤ σjf for f ∈ P . Fix S ∈ S and take f0 ∈ E(S,j) and, for m ≥ 1,
fm ∈ E+

(S,j) such that f ≤
∑

m≥0 fm on S(S,j). It is enough to prove that Ijf(S) ≤∑
m≥0 Ijfm(S). We can then assume

∑
m≥0 Ijfm(S) < ∞. For n > 0, we have

f ≤
[ n∑

m=0
fm

]+
+

∑
m≥n+1

fm on S(S,j)

and

Ijf(S) ≤ Ij

[ n∑
m=0

fm

]+
(S) + Ij

[ ∑
m≥n+1

fm

]
(S).
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Since
∑n

m=0 fm ∈ E(S,j), by property (1)

Ij

[ n∑
m=0

fm

]+
(S) =

n∑
m=0

Ijfm(S) + Ij

[ n∑
m=0

fm

]−

(S).

On the other hand, from
∑

m≥0 fm ≥ f ≥ 0 it follows that( n∑
m=0

fm

)−

=
(

−
n∑

m=0
fm

)+
≤

( ∑
m≥n+1

fm

)+
=

∑
m≥n+1

fm.

Summarizing, we have

Ijf(S) ≤
n∑

m=0
Ijfm(S) + 2Ij

[ ∑
m≥n+1

fm

]
(S) ≤

n∑
m=0

Ijfm(S) + 2
∑

m≥n+1
Ijfm(S),

where the countable subadditivity of Ij and Proposition 3.4 item (6) were used.
Taking limits for n → ∞, (2) follows.

The implication (2) ⇒ (3) is trivial. It remains to prove the implication (3) ⇒ (1).
Then, for fixed f ∈ Ej we may assume that Ijf

+ < ∞. Consider fm ∈ D+
j such

that f+ ≤
∑

m≥1 fm. As f0 ≡ −f ∈ Ej , it follows that f− ≤
∑

m≥0 fm. Thus,
σjf

− ≤ −Ij(f) + Ijf
+. Since, by (3), σjf

− = Ijf
−, one inequality in (1) is

obtained. The other inequality follows by applying this to −f . □

Appendix E. Global extensions

The following result will give us the tools to extend functions defined by lo-
cal conditions (i.e., in terms of the conditional spaces S(S,j)) to functions defined
directly on S (i.e., globally defined).

A subset C ⊆ S will be called admissible if it satisfies the following condition:
whenever S1, S2 ∈ C, we have S(S1,j) ∩ S(S2,j) = ∅. For a fixed j ≥ 0 and a given
admissible subset C ⊆ S, we use the notation w(·) for a choice function of the
following type:

w : C̃ ≡
⋃

S∈C
S(S,j) −→ C,

such that, if S = w(S̃), then S̃ ∈ S(S,j).
Notice that S(w(S̃),j) = S(S̃,j) for any S̃ ∈ C̃, and that w(C̃) = C.

Lemma E.1. Fix j ≥ 0 and let C be admissible as defined above. Let (hS)S∈C
and (vS)S∈C be families of functions, where hS ∈ E(S,j), vS ∈ Mj(S) for S ∈ C,
and set C̃ ≡

⋃
S∈C S(S,j). Then, there exist h ∈ Ej, v ∈

⋂
S∈C̃ Mj(S) such that the

following holds for all S ∈ C̃:

h = hw(S) on S(S,j) and Ijh(S) = Ijh
w(S)(S); (E.1)

v = vw(S) on S(S,j) and Ijv(S) = Ijv
w(S)(S). (E.2)
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Proof. We will prove (E.2); the proof of (E.1) is similar. For each S ∈ C, vS =∑∞
m=1 f

S
m, fS

m ∈ E+
j , so by Remark 2.12 fS

m|S(S,j) ∈ E+
(S,j). Keeping in mind that

C ⊆ C̃, define, for m ≥ 1,

fm(S) =
{
f

w(S)
m (S) if S ∈ C̃,

0 otherwise,
and v ≡

∞∑
m=1

fm.

Then, for S ∈ C̃, fm|S(S,j) = f
w(S)
m |S(S,j) ∈ E+

(S,j) and so v = vw(S) on S(S,j). On the
other hand, if S /∈ C̃ we have fm|S(S,j) = 0 ∈ E+

(S,j); therefore, fm ∈ E+
j . Moreover,

if S ∈ C̃, from Proposition 4.5

Ijv(S) =
∞∑

m=1
Ijfm(S) =

∞∑
m=1

Ijf
w(S)
m (S) = Ijv

w(S)(S) = Ijv
w(S)(w(S)) < ∞,

where we used Corollary A.3 for the second equality and the fact that Ivw(S) is
constant on S(w(S),j), and S ∈ S(w(S),j) for the last equality. The last inequality
follows from the assumption vS ∈ Mj(S) for any S ∈ C. We then conclude that
v ∈ Mj(S) for each S ∈ C̃. □

The next proposition establishes global formulations for the sets Lj and LK
j .

The result is used in Theorem 4.15 to obtain that the global formulation applies to
integrable functions as well. The sets LG

j ,L
K,G
j , appearing below, were introduced

in Definition 4.11.

Proposition E.2.
Lj = LG

j , LK
j = LK,G

j .

Proof. We only prove Lj = LG
j ; the proof of LK

j = LK,G
j is analogous.

Let f ∈ LG
j and ε > 0. Then there exist u, v ∈ Mj such that, for a.e. S ∈ S,

f = v − u a.e. on S(S,j) and Iu(S) ≤ ε, Iv(S) < ∞. Thus, for the referred S ∈ S,
u, v (the same for any S) satisfy the conditions which give that f ∈ Lj .

Let now f ∈ Lj . Then there exists Ŝ ⊂ S, with Ŝc a null set, such that, for each
S ∈ Ŝ, the following holds: for any ε > 0 there exist uS , vS ∈ Mj(S) satisfying

f = vS − uS a.e. on S(S,j) and Iju
S(S) < ε.

We can construct C ⊂ Ŝ that satisfies C̃ ≡
⋃

S∈C S(S,j) =
⋃

S∈Ŝ S(S,j) and S(S1,j) ∩
S(S2,j) = ∅ for S1, S2 ∈ C. Thus, the families of functions (hS)S∈C , (uS)S∈C
and (vS)S∈C satisfy the corresponding hypothesis of Lemma E.1, which gives the
existence of u, v ∈

⋂
S∈C̃ Mj(S) such that, for any S ∈ C̃ (where w(S) below is as

introduced in Lemma E.1),

f = vw(S) − uw(S) = v − u a.e. on S(S,j)

and
Iu(S) = Iuw(S)(S) ≤ ε, Iv(S) = Ivw(S)(S) < ∞.
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Figure 3. Trajectory set for Example F.1.

Notice that Ŝ ⊆
⋃

S∈Ŝ S(S,j). It then follows that C̃c =
⋂

S∈Ŝ Sc
(S,j) is a null set;

therefore, u, v ∈ Mj , which allows us to conclude that f ∈ LG
j . □

Appendix F. Additional examples

The next two examples illustrate the role of the reversed Fatou property (RFP).
The first of them (closely related to the up-branch in Example 2.16) shows how
Leinert’s condition fails, because RFP is not valid. The second one provides a
trajectorially incomplete trajectory space, in which RFP is valid and, then, implies
Leinert’s condition.

Example F.1. In this first example, (S, 0) is an arbitrage node of type I but we
have failure of (L(S,0)). This is explained by the failure of the RFP (see Defini-
tion 3.7).

Let S be the trajectory space composed by the following trajectories (see Fig-
ure 3):

Sn, n ∈ N : Sn
i = 1, 0 ≤ i < n; Sn

i = 2, i ≥ n.

Here σ00 = −∞, and we will show that the reverse Fatou condition fails (which
is what should happen by Theorem 3.10).

We note that S\S = {S : Si ≡ 1, i ≥ 0}, and we will show that the RFP fails for
the portfolios: V m = 0, Hm

m (S) = 1 if Si = 1 for 0 ≤ i ≤ m, Hm
i (S) = 0 otherwise,

therefore nm = m+ 1. Then fm(Sn) = (Sn
n+1 − Sn

n) = 1 if m = n and fm(Sn) = 0
if m ̸= n. Therefore

∑
m≥1 fm(S) = 1 for all S ∈ S, whereas

∑
m≥1 fm(S̄) = 0.

Thus, for every sequence {S(k)}k∈N in S satisfying limk→∞ S(k) = S̄, we obtain

lim sup
k→∞

∑
m≥1

fm(S(k)) = 1 > 0 =
∑
m≥1

fm(S̄) =
∑
m≥1

lim sup
k→∞

fm(S(k)),

i.e., RFP fails.

Example F.2. In this example, the trajectory space has no-arbitrage nodes of
type II. We will show that the RFP holds, and it then follows from Theorem 3.10
that (L(S,j)) holds at all nodes. The point of this example is that S is not complete.
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Figure 4. Trajectory set for Example F.2.

Consider the example with S given in Figure 4. We will verify that Leinert’s
condition holds at every node by an application of Theorem 3.10 by checking that
the reversed Fatou condition holds for this example. The trajectories are

Su,n, n ∈ N : Su,n
i = 2, 0 ≤ i < n; Su,n

i = 3, i ≥ n,

and

Sd,n, n ∈ N : Sd,n
i = 2, 0 ≤ i < n; Sd,n

i = 1, i ≥ n.

We note that S \ S = {S : Si = 2, i ≥ 0}. We will consider the sequence
Sn ≡ (2, 2, . . . , 2, ∗, ∗, ∗, . . .), where the last appearing 2 is the nth coordinate of
the sequence and the entry value ∗ will be equal to 3 or 1 (i.e., Sn

i = 3 for all
i ≥ n+1 or Sn

i = 1 for all i ≥ n+1). Which value to be chosen, 3 or 1, will depend
on n as well as on a given sequence fm ∈ E+, m ≥ 1, and f0 ∈ E . The sequence Sn

to be constructed is a variation from the usual contrarian trajectory construction;
now, a contrarian move is used to define Sn but discarded in Sn+1 given that in fact
we keep the flat trajectory (which, of course, also acts as a contrarian trajectory)
converging to S. The construction of Sn is completed next.

Given f0 ∈ E , fm ∈ D+, m ≥ 1, with
∑

m≥1 V
m < ∞, notice thatHm

i (Sn)(Sn
i+1−

Sn
i ) = 0 if i ̸= n, so

∑
m≥1 H

m
i (Sn)(Sn

i+1 − Sn
i ) = 0 if i ̸= n and fm(Sn) = V m if

n ≥ nm.
SetHi(S) ≡ H0

i (S)+
∑

m≥1 H
m
i (S), which exists by an application of Lemma C.5

(in fact we only need to apply the lemma along S, i.e., we only need Hi(S) =∑
m≥0 H

m
i (S)). If Hn(S) ≤ 0, choose Sn

i = ∗ = 1 for i ≥ n + 1; if Hn(S) > 0,
choose Sn

i = ∗ = 3 for i ≥ n + 1. For example, if H3(S) ≤ 0, then S3 ≡ Sd,4 =
(2, 2, 2, 2, 1, 1, 1, . . .); if H4(S) > 0, then S4 ≡ Su,5 = (2, 2, 2, 2, 2, 3, 3, 3, . . .), etc.
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Therefore, using the standard Fatou lemma,∑
m≥0

fm(Sn) =
∑
m≥0

[
V m +

nm−1∑
i=0

Hm
i (Sn)∆iS

n

]

≤ lim inf
p→∞

[ ∑
m≥0

V m +
p∑

i=0

∑
m≥0

Hm
i (Sn)∆iS

n

]

= lim inf
p→∞

[ ∑
m≥0

V m + 1p≥n

∑
m≥0

Hm
n (Sn)(Sn

n+1 − Sn
n)

]
=

∑
m≥0

V m +Hn(Sn)(Sn
n+1 − Sn

n) ≤
∑
m≥0

V m.

(F.1)

Inequality (F.1), combined with the fact that lim supn→∞ fm(Sn) = V m, allows us
to check the reversed Fatou condition directly:

lim sup
n→∞

∑
m≥0

fm(Sn) ≤
∑
m≥0

V m =
∑
m≥0

lim sup
n→∞

fm(Sn).

Then, Theorem 3.10 is applicable to this example.

The final example illustrates how integrable functions may arise in the limit as
time goes to infinity.

Example F.3. As mentioned in Remark 2.15, the space of integrable functions in
our setting coincides with a classical L1-space for binary trees. In this example, we
provide some explicit examples of integrable functions for a trinomial model. We
make no claim of generality but provide the examples as illustration.

The first split is binomial and with s0 = 1
2 and Sn dyadic numbers in [0, 1], as

S0
n = 1

2n+1 , S1
n = 2n+1 − 1

2n+1 , n ≥ 0;

S2
0 = 1

2 , S2
1 = 1

4 , S2
n = 2n−1 + 1

2n+1 , n ≥ 2;

S3
0 = 1

2 , S3
1 = 3

4 , S3
n = 3 2n−1 − 1

2n+1 , n ≥ 2,

and we expect it is clear how the construction continues. Instead of providing
a detailed formal description, we illustrate the trajectory set in Figure 5 so that
the full trajectory set can be easily envisioned. The model has the trajectories of a
binomial model, adding also constant trajectories at each node, except at the initial
one. It follows that |Sn − Sn−1| ≤ 1

2n+1 for n ≥ 1, so the limit limn→∞ Sn = ST

exists.
For any c, K ∈ R with 0 < K ≤ 2|c|, let a = (ai)i≥0, where each ai : S → R is

non-anticipative and satisfies |ai| ≤ K (i.e., ai is constant on each subspace S(S,i)).
Assume also that a ∈ H. Define

hn(S) = c+
n−1∑
i=0

ai(S)∆iS, S ∈ S.
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Figure 5. Trajectory set for Example F.2.

Knowing that − 1
2i+2 ≤ ∆iS ≤ 1

2i+2 , it follows that for c > 0 and any S ∈ S,

hn(S) ≥ c−
n−1∑
i=0

|ai(S)|
2i+2 ≥ c− 1

4

n−1∑
i=0

K

2i
= c− K

2

(
1 − 1

2n

)
> c− K

2 ≥ 0.

In a similar way, for c < 0 we get hn ≤ 0. Then hn ∈ D+ or D−, so hn ∈ E ⊂ Lσ̄.
For any S ∈ S and m > n,

|hm(S) − hn(S)| ≤
m−1∑
i=n

|ai(S)| |∆iS| ≤ K

m−1∑
i=n

1
2i+2 ≤ K

4n

m−n−1∑
i=0

1
2i+2 <

K

2n
;

consequently, the sequence (hn)n≥0 converges uniformly. Define

h(S) = c+
∞∑

i=0
ai(S)∆iS, S ∈ S. (F.2)

The partial sums are hn(S). Then (hn)n≥0 converges to h in ∥·∥ (the norm defined
on S); so, by Theorem 4.3, h ∈ Lσ̄. We also comment that a European call or put
with strike 1/2 is also integrable.

Noticing that the portfolios hn can be seen as piecewise constant functions of
ST , we remark that they can be represented in terms of Haar-like expansions. We
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just introduce the first four of them for illustration:
h0(S) = c, so h0(S) = cϕ00(S), where ϕ00 = 1S ;

h1(S) − h0(S) = a0

4

{
1, S ∈ S(S1,1)

−1, S ∈ S(S0,1)
= a0

4 ψ00(S);

h2(S) − h1(S) =


a1(S1)

8 ψ11(S)
a1(S0)

8 ψ10(S),

where

ψ11(S) =


1, S ∈ S(S1,2)

0, S = Sc,1

−1, S ∈ S(S3,2)

0, S ∈ S(S0,1);

ψ10(S) =


0, S ∈ S(S1,1)

1, S ∈ S(S2,2)

0, S = Sc,0

−1, S ∈ S(S0,2).

So (F.2) can be seen as an expansion of the Haar-type functions introduced above.
Examples of functions in M (see Definition 4.4) can be obtained in a similar

way.
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