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DEPTH AND STANLEY DEPTH OF POWERS OF THE PATH
IDEAL OF A CYCLE GRAPH

SILVIU BALANESCU AND MIRCEA CIMPOEAS

ABSTRACT. Let Jpm = (T1Z2 Tm,T2Z3 " Tym+1,--->Ln—m+1"" " Tn,
Tp—m—42 " TnTi,...,TnTl - Tm—1) be the m-path ideal of the cycle graph
of length n in the ring S = K[z1,...,zn]. Let d = ged(n, m). We prove that
depth(S/J}, ) <d—1forallt > n—1. We show that sdepth(S/J}, . ;) =
depth(S/Jflm_l) = max{n—t—1,0} for all t > 1. Also, we give some bounds

for depth(S/.J}, ,,,) and sdepth(S/JE ..), where ¢ > 1.

INTRODUCTION

Let K be a field and S = Klzy,...,2,] the polynomial ring over K. The
study of the edge ideals associated to graphs is a classical topic in combinatorial
commutative algebra. Conca and De Negri generalized the definition of an edge
ideal and first introduced the notion of a m-path ideal in [6]. In the recent years,
several algebraic and combinatorial properties of path ideals have been studied
extensively. However, little is known about the powers of m-path ideals.

Following our previous work [3], the aim of our paper is to investigate the depth
and the Stanley depth (sdepth) of the quotient rings associated to powers of the
m-path ideal of a cycle. For the definition of the sdepth invariant see Section 2.

For n > m > 1, the m-path ideal of the path graph of length n is

Inm = (Z1Z2 -+ Ty, T2T3 -+ Tyt -+ s Tpp—mg1 - ) C S
The m-path ideal of the cycle graph of length n is
Jn,m = Inm + (xn—m+2 I, Tn—m43° Tnl1L2, .-, Tpdl " xm—l)~

In [3] we proved that

A e e k= R R e
depth(S/T% ) = p(n,m, 1) =" mH mil |2 tsntlom

m—1, t>n+1-m.
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Also, we proved that
sdepth(S/I}, ,,) > depth(S/I}, ,,) and  sdepth([} ) > depth(I},,).
The scope of our paper is to obtain similar results for powers of the ideal J, ,,. Let
n>m >2andt> 1. For m =2, Mihn, Trung and Vu [I0] proved that
n—t+1 n+1
—3 .

Let d = ged(n,m) and let tg < n — 1 be maximal with the property that there
exists an integer a such that mty = an+d. In Theorem [2.5] we prove that if d =1
then

depth(S/J} ;) = { -‘ forall2 <t < {

sdepth(S/J}, ,,) = depth(S/J}, ,,) =0 for all t > t.
Also, we prove that if d > 1 then
depth(S/J}, ,,) <d—1 and sdepth(S/J} ) <n— % for all ¢ > t.
In Corollary 2.8 we prove that if n is odd, then
sdepth(S/J}, ,,_5) = depth(S/J} , ) =0 forallt> L_l
Also, we prove that if n is even, then

depth(S/J},,,_5) <1 and sdepth(S/J},, 5) < forallt >n —1.

|3

In Theorem [2.10, we prove that

depth(S/J} ) < p(n—1,m,t) + 1.
In Theorem [3.1] we prove that

sdepth(S/J! 1) = depth(S/J. 1) = {n —t-1otsn-l
’ ’ 0, t>n.
In Theorem we show that if n = mt — 1 then
sdepth(S/.J;, ,,,) = depth(S/J; ,,,) =0 forall s > t.
Also, for n > mt, we prove that
sdepth(S/J}, ,,,), depth(S/J} ) > o(n —1,m,1).

In the last section, we provide a code in CoCoA that computes depth(S/.J}, ).

1. PRELIMINARIES
First, we recall the well-known depth lemma; see, for instance, [15, Lemma 2.3.9].

Lemma 1.1 (Depth lemma). If0 - U — M — N — 0 is a short exact sequence
of modules over a local ring S, or a Noetherian graded ring with Sy local, then
(1) depth M > min{depth N,depthU}.
(2) depthU > min{depth M, depth N + 1}.
(3) depth N > min{depthU — 1, depth M }.

Rev. Un. Mat. Argentina, Vol. 68, No. 2 (2025)



DEPTH AND SDEPTH OF POWERS OF PATH IDEAL OF CYCLE GRAPH 679

Let M be a Z™-graded S-module. A Stanley decomposition of M is a direct
sum D : M = @;_, m;K[Z;] as a Z"-graded K-vector space, where m; € M is
homogeneous with respect to Z"-grading, Z; C {x1,...,z,} such that m; K[Z;] =
{um; : v € K[Z;]} C M is a free K[Z;]-submodule of M. We define sdepth(D) =
min;—y ., |Z;| and sdepth(M) = max{sdepth(D) | D is a Stanley decomposition
of M}. The number sdepth(M) is called the Stanley depth of M.

Herzog, Vladoiu and Zheng showed in [9] that sdepth(M) can be computed in a
finite number of steps if M = I/J, where J C I C S are monomial ideals. In [13],
Rinaldo gave a computer implementation for this algorithm, in the computer al-
gebra system CoCoA. We say that a Z™-graded S-module M satisfies the Stanley
inequality if

sdepth(M) > depth(M).
In [2], J. Apel restated a conjecture firstly given by Stanley in [14], namely that any
Z"-graded S-module M satisfies the Stanley inequality. This conjecture proves to
be false, in general, for M = S/I and M = J/I, where 0 # I C J C S are
monomial ideals (see [7]), but remains open for M = I.

The explicit computation of the Stanley depth it is a difficult task, even in very
particular cases, and it is interesting in itself. Also, although the Stanley conjecture
was disproved in the most general setup, it is interesting to find large classes of
ideals that satisfy the Stanley inequality. For a friendly introduction to the topic
of Stanley depth, we refer the reader to [g].

In [12], Asia Rauf proved the analog of Lemma for sdepth:

Lemma 1.2. If0 - U - M — N — 0 is a short exact sequence of Z™-graded
S-modules, then sdepth(M) > min{sdepth(U),sdepth(N)}.
We recall the following well-known result (see, for instance, [I5] Lemma 2.3.10]):

Lemma 1.3. Let M be a graded S-module and f € m = (z1,...,2,) C S a
homogeneous polynomial such that f is regular on M. Then depth(M/fM) =

depth(M) — 1.

We also recall the following well-known results. See, for instance, [12, Corol-
lary 1.3], [5, Proposition 2.7], [4, Theorem 1.1], [9, Lemma 3.6] and [I2, Corol-
lary 3.3].

Lemma 1.4. Let I C S be a monomial ideal and let w € S be a monomial such
that u ¢ I. Then

(1) sdepth(S/(I : u)) > sdepth(S/I).

(2) depth(S/(I : w)) > depth(S/I).
Lemma 1.5. Let I C S be a monomial ideal and let uw € S be a monomial such
that I =u(I : u). Then

(1) sdepth(S/(I : u)) = sdepth(S/I).

(2) depth(S/(I : u)) = depth(S/I).
Lemma 1.6. Let I C S be a monomial ideal and let 8" = S[x,41]. Then

(1) sdepthg, (S’/15") = sdepthg(S/I) + 1.

(2) depthg, (S'/IS") = depthg(S/I)+1.
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680 SILVIU BALANESCU AND MIRCEA CIMPOEAS

Lemma 1.7. Let I C S be a monomial ideal. Then the following assertions are
equivalent:

(1) m=(x1,...,2,) € Ass(S/I).

(2) depth(S/I)=0.

(3) sdepth(S/I)=0.

Let 2 < m < n be two integers. We consider the ideal

In,m:(1’1~.~xm7x2~.~xm+1,...,$n_m+l...xn) cS.
We denote
—t+2 —t+2 )
p(n,m,t) = n—t+2_\\"m+1J_’7nm+l—" t<n+1-m;
m—1, t>n+1—m.

We recall the main result of [3]:

Theorem 1.8 (See [3| Theorem 2.6]). With the above notation, we have:

(1) sdepth(S/I} ,,) > depth(S/I},,,) = w(n,m,t) for any 1 < m < n and
t>1.
(2) sdepth(S/I}, ,,,) < sdepth(S/ I, ) = @(n,m, 1).

2. MAIN RESULTS
We consider the following ideal:

Jn,m = Inm + (!L‘n,erQ Tl Tpn—m+3 " Tnl1T2, ..., TpT1 """ xm71)~

Let d = ged(n, m) and let ¢y := to(n, m) be the maximal integer such that tg < n—1
and there exists a positive integer a such that

mty = an + d.
Let t > to be an integer. Let w = (2122~ 2p)%, wy = w- (x1---Zp) 70, 7= 5
and s := 7. If d > 1, we consider the ideal
Un,a = (1, Za41, -+ Taer—1)41) VT2, Zag2, - - s Tagr—1)+2) N - -0 (Td, Tads - - -, Tra)-
Firstly, we state the following lemma:

Lemma 2.1. The map r-%z/;fm LN T.(ZZ/;InZZ) is bijective.

Proof. It follows from the fact that ged(s,r) = 1. O

As usual, if J C S is a monomial ideal, we denote by G(J) the set of minimal
monomial generators of .J.

Lemma 2.2. With the above notations, we have:
(1) Ifd=1 then (J} ,, : wy) = wm for all t > to.
(2) Ifd > 1 then (J} ,, : wy) = Up g for all t > 1.
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Proof. (1) Note that o = m ! in Z/nZ, hence to and a are uniquely defined. We
claim that it is enough to show the assertion for ¢ = ¢y, that is, (Jflc_”m Tw) =m.

Assume that (J°,, : w) = m and t > to. Since z;w € Jlo,, for all 1 < j < n,
it follows that z;w; = zjw(xy - 2m)~" € J),, forall 1 < j < n, and therefore
m C (J} ,, : we). On the other hand, w; ¢ J}, ,,, since deg(w;) = mt — 1 and J}, ,,,
is generated in degree mt. Hence (JfL’m :wy) = m, and the claim is proved.

Since J,, ,,, is invariant to circular permutations of variables and w ¢ Jlo, | it is
enough to show that ’

riw =2y 2t € G(J,,). (2.1)

Indeed, one can easily check that
to—1
Tiw = H (Te(mj+1) ** Te(mjtm))s
§=0
where ¢(k) € {1,...,n} is the unique integer with k = ¢(k) (mod n).

AS Zpmjt1) - Tomj+m) € G(Jn,m) for all 0 < j < to — 1, we proved (2.1 and
thus (1).

(2) Note that deg(w;) = an + m(t — to) = mt — d, while J}, , is minimally gen-
erated by monomials of degree mt. Also, as wy = (z1 - - ~xm)t_t0w and z1---x,, €
G(Jn,m), we have that

(2 2 w) C (T}, we). (2.2)
Let u = z{'25? - x4~ € G(J}, ,,). Note that if u € G(Jy,m) then supp(u) contains
exactly s = 7 variables whose indices are congruent with j modulo d, where
0 < j <d-—1. Therefore, as d = ged(n, m), it follows that

a1+ ad41 + 0+ Agr—1)41 = G2 +Ad42 T T Agr—1)42 = ¢

tm (2.3)
:ad+02d+"‘+ard:7-
Similarly, if we rewrite w; = (1 - - 2,)* (21 - - - 2 )P as wy = a2 - 2br then
we have
no  m(t —1 tm
b1+bd+1+"‘+bd(r—1)+1 :...:bd+b2d+...+brd:7+% = 771.

(2.4)
Let v € S be a monomial such that vw; € Jﬁ’m. It follows that there exists
u € G(J},,) such that ulvw,. From and it follows that for every
0 < j <d—1 there exists k; € {1,...,n} with k; = j (mod d) such that x,[v.
Therefore, v € U, 4 and thus (J,twn cw) € U, q. Hence, from , the identity
(J}, n : we) = Up 4 follows from

Un,a C (J}0 : w). (2.5)

Let v = g, x4, - - - o, € G(Up,a), where £; = j (mod d). In order to prove (2.5)), it
suffices to show that vw € G(J}2,,).
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Since mtg = an+d, by dividing with d, it follows that sty = ar+1 and therefore

to=31in Z/rZ. If tg = £ with 0 < ¢ < r — 1, then we claim that
to=Ll+n—r>n—r=r(d-—1). (2.6)

Let t = £ +n —r. Since t) = fp = 51, we can write £s = Br + 1 for some 3 and
thus

sto=s(l+n—r)=PFrt+sm-r)+1=(B+s(d-1)r+1=ar+1,

with o’ = 8+ s(d —1). Hence mt, = o'r +d. Since % =typinZ/rZ and tg <n—1
is the greatest integer with mty = ar +d, it follows that to = t,. Hence, we proved
29).

For simplicity, if j > n, we denote by z; the variable xz(;), where 1 < £(j) < n
such that j = () (mod n). See also the proof of (1).

Given a monomial 4 = Z;Tiy1 - Titm-1 € G(Jnm), We let Tyinw) = ; and
Tmax(u) = Tiym—1 (With the above convention).

We apply the following algorithm:

(1) We let uy := @p, T 41" Toypm—1, Where v = g, - - - Xy, ; see above.

(2) Assume we defined uy,...,uy, where 1 <k <tg— 1. If yax(u,) = @, for
some 1 < j < d— 1, then we let ug11 = @20, 11 To,+m—1. Otherwise,
we let upy1 = Tmax(ug)+1 """ Tmax(uy)+m-

(3) We repeat step (2) until k = to.

We claim that vw = ujug - - - ug,. Obviously, deg(vw) = mty = deg(uq - - - us, )-

Let ky be the minimal index with max(ug,) = d — 1. We claim that k; < r.
Indeed, if k1 > r then w1 = xg,  Togrm—1,-+ - Ur = Teyt(r—1)m """ Tlytrm—1-
From Lemma and the fact that m = sd, it follows that

a+m-—1,... bg+rm—-1}={d—-1,2d - 1,...,rd — 1},

using the above convention. Since £;_1 = (d—1) (mod d), from all the above, it fol-
lows that {41 = £4+7rm—1 and hence k; = r. Note that uy, = ¢, , - To, ;+m—1-

Similarly, let ko be the minimal index with max(ug,) = d — 2. Using the same
line of arguing, it follows that k3 < 2r. Inductively, let k; be the minimal index
with max(uy,) = d — j, for j <d —1. Then k; < jr. In particular, we have that
kqg—1 < (d—1)r <ty. Also, for k > kq_1, from the definition of u’s, we have that
max(uk) ¢ {gl, ce 7£d—1}-

Now, from all the above, it is easy to see that uy - - - u;, = vw, as required. [

In the following example, we show how the algorithm given in the proof of

Lemma [2.2{(2) works.

Example 2.3. Let n = 12 and m = 8. Then d = ged(n,m) =4, r =3 and s = 2.
Note that 8- 11 =7-12 44 and g = 11 is the largest integer < n — 1 = 11 with
tom=an+d. Alsoa=1.

We have w := (1‘1 . 'ZE12)7 and U12,4 = ($1,$5,$9)m (1‘2, 176,$10)ﬂ(133,137,1311)ﬁ
(174,$8,l’12).

Let v := xsxow1124 € U2 a. Then €1 =5, by =2, 3 =11 and {4 = 4.
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We apply the aforementioned algorithm:

We let uy := 2425262728292 10L11-

Since ¢3 = 11, it follows that k1 = 1 and us = £11T1221T2T324T5T6.
Since £y # 6, we let uz = x7T8T9T10T11T12T1T2-

Since {5 = 2, it follows that ko = 3 and uy = T2T324T5T6T7T8Tg.
Since £1 # 9, we let us = T10T11T12T1T2T3T4X5.

Since ¢1 = 5, it follows that k3 = 5 and ug = T5Tex7X8T9L10T11L12-

From now on, the algorithm goes smoothly, and we have: u; = x1x2x30405T6T7 TS,
Ug = T9gr10L11X12X1T2X3T4, Ug = Ug, U1 = U7 and U1l = us. It is easy to see that
ULy - - u1; = vw. Therefore vw € J11218, as required.

The following result is elementary. However, we give a proof for the sake of
completeness.

Lemma 2.4. Letd > 1 and Z1 UZ3U---U Zg = {x1,...,2,} be a partition, i.e.,
|Zi| >0 and Z;NZ; =0 for all i # j. Let P, = (Z;) C S for1 <i < d and
U:=PN---NP;. Then depth(S/U)=d—1.

Proof. We use induction on d > 1. If d = 1 then Z; = {z1,...,2,} and U =m =

(x1,...,xp). Hence, there is nothing to prove.

Without loss of generality, we can assume that Zy U+ U Zy_1 = {z1,..., 2}
for some k < n and Z; = {xk41,...,2n}. From the induction hypothesis, we have
that

depth(Sg/(PhN---NPy_1)) =d—2, where Sy, = K[z1, ..., 2]
From [I1, Lemma 1.1] it follows that
depth(S/(PyN---NPy))
= depth(Sk/(PL NN Py_q1)) + depth(K[zk11,...,2n)/Pa) + 1 =d — 1,

as required. O

Theorem 2.5. With the above notations, we have:
(1) Ifd =1 then sdepth(S/.J}, ,,) = depth(S/.J}, ,,) = 0 for all t > to.
(2) Ifd > 1 then depth(S/J} ,,) <d —1 for all t > to.
(3) Ifd > 1 then sdepth(S/.J, ,,,) < sdepth(S/Uy,q) <n— %5 for allt > to.

Proof. (1) From Lemma (1), it follows that m € Ass(S/Jf ) for all t > to.
Therefore, the required conclusion follows from Lemma

(2) From Lemma(Z)7 it follows that (J} ,, : w;) = Uy 4. From Lemma(Z)
it follows that

depth(S/.J}, ,,,) < depth(S/Up.a).

On the other hand, from Lemma it follows that depth(S/U, 4) = d — 1 and
therefore depth(S/.J}, ,,,) < d — 1.

(3) Similarly, from Lemma [T.4](1) it follows that

sdepth(S/J}, ,,) < sdepth(S/Un,a).-
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On the other hand, since Uy, ¢ = (24, - - ., ar)U’, where U' = (21, ..., Zr(g—1)41)N
<N (xg—1,--,Zdr—1), from [B, Theorem 1.3] it follows that

sdepth(S/U,,. q) < sdepth(S/(xg,...,xar)) =n—r=n— g7

as required. O

Our computer experiments in CoCoA, using the code given in Section 4, lead us
to propose the following conjecture:

Conjecture 2.6. We have that
depth(S/J}, ) >d—1 forallt>1.

Remark 2.7. Let n > m > 2 be two integers and let d := ged(n, m). From Theo-
remﬁwe have that depth(S/J;, ,,) < d—1for all t > to. Hence, if Conjecture
is true, then

tlggo depth(S/J,, ,,) =d — 1.

Corollary 2.8. We have that:
(1) Ifn is odd, then sdepth(S/JY ,,_5) = depth(S/J},, o) =0 for allt > 5.
(2) Ifn is even, then depth(S/J) ,,_») <1 for allt >n — 1.
(3) Ifn is even, then sdepth(S/J}, , ) < § for allt>n —1.

Proof. (1) Since n is odd, we have d = ged(n,n — 2) = 1. It is easy to see that

to = 7% and o = 251, Hence, from Theorem (1) it follows that

Sdepth(s/JfL,n—Q) = depth(S/J},,, _5) =0 forallt> nT—l

(2) Since n is even, we have d = ged(n,n—2) = 2. It is easy to see that tg = n—1
and a = n — 3. From Theorem [2.5/(2) it follows that
depth(S/J;, , o) =1 forallt>n—1.
(3) As in the proof of (2), from Theorem [2.5|(3) it follows that
sdepth(S/J}, ,,_5) < g forallt >n—1.
Hence, the proof is complete. O
Lemma 2.9. Letn >m > 2 and t > 1 be some integers. Then
(thz,mvxn) = (Ifl—l,m,xn)~

Proof. The inclusion 2O is obvious. The converse inclusion follows from the obser-
vation that a minimal monomial generator of J, ,, which is not divisible by z,
belongs to I,,—1 m. O

Theorem 2.10. Letn >m > 2 and t > 1 be some integers. Then:
(1) depth(S/J% ) < p(n—1,m,#) + 1.
(2) If depth(S/(Jf . : zn)) > depth(S/.J}, ,,) then depth(S/Jf ) = o(n —
1,m,t).
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Proof. (1) We consider the short exact sequence
0— S/(J)yn ) = S/} = S/ (T} s n) = 0. (2.7)
From Lemma [2.9] and Theorem [L.§ it follows that
depth(S/(J}, 1> #n)) = depth(S/(I}_ 1 s %n)) = @(n — 1,m,t).

Let s := depth(S/(J}, ,,, : ©,,)) and d := depth(S/.J}, ,,). From Lemma (2)7 we
have that s > d. Therefore, according to Lemma it follows that

o(n—1,m,t) > min{s — 1,d} > min{d — 1,d} =d — 1.
Hence, d < ¢(n — 1,m,t) + 1, as required.
(2) As in the proof of (1), it follows from (2.7) and Lemma O
3. SOME SPECIAL CASES

We use the notations from the previous section.

Theorem 3.1. We have that
—t—1, t<n-2

sdepth($/J5,,—1) = depth(S/J5 ,_1) = 4 -

: : 0, t>n—1.

Proof. Since d = ged(n, m) = ged(n,n — 1) = 1, it follows that ¢y := to(n,n—1) =
n — 1, since mtyg = (n —1)> = (n —2)n + 1 = an + d. Therefore, according to
Theorem [2.5|(1), the conclusion follows for t > n — 1. Now, assume t < n — 2.

If n = 3, then ¢t = 1 and it is an easy exercise to show that

sdepth(S/Js2) = depth(S/Js2) =1=n—t— 1.
Now, assume n > 4 and t < n — 2. We consider the ideals
L= (J} 1 cad) for 0<j<t.
By straightforward computations, we have
Li=J 0 (Jl_1,5S) for0<j<t (3.1)
and
(Lj,zn) = ((z1--- a:n_l)tfj(Ji_17n_25),xn) for0<j<t-—1. (3.2)
We consider the short exact sequences
0—S/Li— S/Ly — S/(Ly,x,,) = 0
0—S/Ly — S/Ly — S/(L1,z,) =0

0— S/Lt — S/Lt,1 — S/(Lt,l,xn) — 0.
From , the induction hypothesis and Lemma it follows that
sdepth(S/(Lj, xr)) = depth(S/(Lj,zn)) =n—j7—2 forall0<j<t—1. (34)
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On the other hand, from (3.1)) we have L; = (J},_, ,,_»S). Hence, from the induc-
tion hypothesis and Lemma [I.6] it follows that

sdepth(S/L;) = depth(S/Ly) =(n—1—-t—-1)+1=n—-1-1¢ (3.5)
From , and the short exact sequences we deduce inductively that
sdepth(S/L;),depth(S/L;) >n—1—t forall0<j<t—1. (3.6)
On the other hand, from Lemma we have
depth(S/Lg) < depth(S/L;) and sdepth(S/Lg) < sdepth(S/L;). (3.7)
Since Lo = J% ,,_;, from (3.5)), and it follows that
sdepth(S/J),,, 1) = depth(S/J} , ) =n—t—1,

which completes the proof. O

Remark 3.2. Let S, ipm—1 := K[21,22,...,Zntm—1]. We note that
Sn+m71 ~ S

o (3.8)
(I;+m_17m7 L1 = Tn4+1,22 — Tn42,- -+ Tm—1 — $n+m—1) thz,m
Assume that m = n — 1. It is not difficult to see that
. t
T1 — Tpt1, L2 — Tpt2, ..., Tn_o — Tap—2 IS & regular sequence on SQn_Q/IQn_Qm_l.
(3.9)

From (3.9)), Lemma (3.8) and Theorem it follows that
depth(S/JfL, —1) = depth(SQTL—Q/Ién—Q,n—l) = 90(277’ - 27 n— 17 t) —n+ 27

from where we deduce the formula given in Theorem for depth(S/J},, ;).
Unfortunately, this method is not useful in the computation of sdepth(S/.J}, ,,_1).

We also mention that the sequence 1 — 41,22 — Tpy2,...,Tp—2 — Top_2 IS
not regular when n > m + 1, therefore we cannot use in order to compute (or
at least to give some bounds for) depth(S/.J}, ).

Lemma 3.3. Let m,t > 2 and n > mt — 1 be some integers, and L = (Jf%m :
(x122 - Tmi—1)). We have that:

(1

Ifn=mt—1then L=m= (z1,22,...,2Zp).

)
(2) If n=mt then L = (T, Tam, - -+ s Tint)-
(3) If mt <n<m(t+1) then L = (T, Tom, -, Tmt, Tn)-
(4) If n>m(t+1) then L = (T, ..., Tmt, Tn) + V, where
V = ((Emt+1 e (Emtera xmt+2 e xmt+m+1a ooy Tp—m " xnfl)t
C Kltmis1, - rn 1],

Moreover, V =1, ..
Proof. (1) As in the proof of Lemma we use the convention
j=n+j=2n+j=--- foralll <j<n.

We fix 1 < ¢ < n and we define inductively the monomials vy := z;z;11 - Tixm—1
and Up 1= Ty +1Tmp+2 *° * Tng+m, Wherem; = iand my = my_1+mfor2 <k <t.
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Obviously, ux € G(Jnm) for all 1 < k < t, thus wyug---u; € G(J},,,). On the
other hand, it is easy to see that

Ti - (T1@2 - Trp—1) = Urg - Uy

Therefore, x; € L. Since ¢ was arbitrarily chosen, it follows that m C L. Obviously,
L # 8, since x1x3 -+ Tymy—1 ¢ J), - Therefore L = m, as required.

(2) Similarly to (1), we can deduce that x,,, Tam, - .., Tmt € L. For instance, we
have

T - (X122 Typg—1)

= (1'1 e mm)(xm T z2m,—1)(x2m e :C3m—1) T (Im,t—m, e xmt—l) S J;;m
Also, it is easy to see that z; ¢ L for any j ¢ {m,2m,...,mt}. Since
(‘]:7,7m3 TmyT2my - - - 7$mt) = ('T’mm .- 7xmt)a

the conclusion follows immediately.
(3) The proof is similar to the proof of (2), with the remark that z,, € L, since

Tn(21%2 Tmi—1) = (Tn®1 - Tyne1) (@m - Tam—1) - (Ta—1ym - Tem—1) € -

(4) As in the previous cases, it is easy to see that (Z.,...,Zme, ) C L and
xzj ¢ L for any j ¢ {m,...,mt,n}. Also, using similar arguments as in the proof
of Lemma we deduce that

(J»Z,ma TmyT2my - - - 7xmt) = (-rnu <oy Tty xn) + V.
Hence, we get the required conclusion. O

Using the above lemma, we are able to prove the following result:

Theorem 3.4. Let m,t > 2 and n > mt — 1 be some integers. We have that:

(1) If n=mt — 1 then sdepth(S/J;, ,,,) = depth(S/J;, ,,) = 0 for all s > t.

(2) If n > mt then sdepth(S/J}, ) > ¢(n —1,m,t).

(3) If n > mt then p(n —1,m,t) +1 > depth(S/J} ) > o(n —1,m,t).
Proof. Assume n =mt — 1. From Lemma [3.3)(1) it follows that

(Jym s w) =m, where w:= 2125 p. (3.10)
Let wy = w - (1 -+ ,)® " Since wy ¢ J; ,, from (3.10) it follows that
(Jim Dw) = m.

Therefore, m € Ass(S/J;, ,,,) and (1) follows from Lemma
Now, assume n > mt. Let Lo = J. ., L;:= (Lo :zy---x;) for 1 <j<mt—1,

and U; = (Lj—1,x;) for 1 <j <mt iwln.,\?V]e consider the short exact sequences
0—S/L; - S/Lj_1 - S/U; -0 forl<j<mt—1. (3.11)
Note that, according to Lemma [2.9] we have that
(Lo, ) = (I} _y pp,an) forall 1 <j<mt—1, (3.12)
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where Ifl_Lm C 8" =K]Jz1,...,2,-1] and the isomorphism is given by the circular

permutation of variables which send j to n. On the other hand, we have
Uj = (Lj—1,25) = (Jpm : 1. Tj-1),25)
= (S @)t 1 jo1) = (g Tt - Tnn)

forall 1 <j <mt—1. From (3.12)), (3.13)), Lemma and Theorem it follows
that

(3.13)

depth(S/U;) > depth(S' /I, ,,,) = ¢(n —1,m,t) (3.14)
and
sdepth(S/U;) > sdepth(S'/I,_; ,,,) > ¢(n—1,m,t). (3.15)
Also, from Lemma [.4] we have that
depth(S/Lo) < depth(S/L1) < --- < depth(S/Lim—1) (3.16)
and
sdepth(S/Lg) < sdepth(S/L;1) < -+ < sdepth(S/Lim—1). (3.17)

We consider three cases:
(i) If n = mt, then according to Lemma [3.3](2), it follows that

sdepth(S/Lim—1) = depth(S/Liypm—1) =n —t.
(ii) If mt <n < m(t+ 1), then according to Lemma [3.3)(3), it follows that
sdepth(S/Lim—1) = depth(S/Lypm—1) =n —t — 1.
(iii) If n > m(t + 1), then according to Lemma [3.3|(4), it follows that
sdepth(S/Lim—1) > depth(S/Lim—1) = (m — 1)t + o(n —mt — 1,m, t).

In all of the above cases (i), (ii) and (iii), it is easy to see that the following
inequalities hold:

sdepth(S/Lim—1) > depth(S/Lim—1) > p(n — 1,m,t). (3.18)

From (3.14), (3.15), (3.16]), (3.17), (3.18), the short exact sequences (3.11)), and
Lemmas [I.1 and [I.2] it follows that

depth(S/J}, ) > ¢(n—1,m,t) and sdepth(S/J} ) > ¢(n—1,m,t).

Also, from Theorem [2.10|(1), it follows that depth(S/J} ) < @(n —1,m,t) + 1.
Thus, we complete the proof of (2) and (3). O

Remark 3.5. Note that, in the case (1) of Theorem we have that d =
ged(n, m) = 1. However, the result is stronger than the result from Theorem(l),
since tg = n — 1 is larger than ¢t = "7_1
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4. A CoCoA copE
The following code in CoCoA computes depth(S/.J}, ) with S = Q[z1,...,z,]:

N :=8 M :=6; T :=4;
// Here one can choose other values.
Use R := QQ[z[1..N]];
J :=Ideal(0);
For K :=1 To N Do
U =1,
For L :=1To M Do
If (K4+L>N) Then U :=U=x*z[K+L— NJ;
Else U := U * z[K + L]; EndIf;
EndFor;
J = J +Ideal(U);
EndFor;
/] J is the ideal Jp .
I :=Ideal(1);
For S:=1To T Do I := I * J; EndFor;
// 1 is the ideal J}, ..
Depth(R/I);
L;
// depth(S/Jg¢) =1, where S := Q[x1,. .., xs].

Note that d = ged(n,m) = ged(8,6) = 1.
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