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DEPTH AND STANLEY DEPTH OF POWERS OF THE PATH
IDEAL OF A CYCLE GRAPH

SILVIU BĂLĂNESCU AND MIRCEA CIMPOEAŞ

Abstract. Let Jn,m := (x1x2 · · · xm, x2x3 · · · xm+1, . . . , xn−m+1 · · · xn,
xn−m+2 · · · xnx1, . . . , xnx1 · · · xm−1) be the m-path ideal of the cycle graph
of length n in the ring S = K[x1, . . . , xn]. Let d = gcd(n, m). We prove that
depth(S/Jt

n,m) ≤ d − 1 for all t ≥ n − 1. We show that sdepth(S/Jt
n,n−1) =

depth(S/Jt
n,n−1) = max{n− t−1, 0} for all t ≥ 1. Also, we give some bounds

for depth(S/Jt
n,m) and sdepth(S/Jt

n,m), where t ≥ 1.

Introduction

Let K be a field and S = K[x1, . . . , xn] the polynomial ring over K. The
study of the edge ideals associated to graphs is a classical topic in combinatorial
commutative algebra. Conca and De Negri generalized the definition of an edge
ideal and first introduced the notion of a m-path ideal in [6]. In the recent years,
several algebraic and combinatorial properties of path ideals have been studied
extensively. However, little is known about the powers of m-path ideals.

Following our previous work [3], the aim of our paper is to investigate the depth
and the Stanley depth (sdepth) of the quotient rings associated to powers of the
m-path ideal of a cycle. For the definition of the sdepth invariant see Section 2.

For n ≥ m ≥ 1, the m-path ideal of the path graph of length n is

In,m = (x1x2 · · · xm, x2x3 · · · xm+1, . . . , xn−m+1 · · · xn) ⊂ S.

The m-path ideal of the cycle graph of length n is

Jn,m = In,m + (xn−m+2 · · · xnx1, xn−m+3 · · · xnx1x2, . . . , xnx1 · · · xm−1).

In [3] we proved that

depth(S/It
n,m) = φ(n, m, t) :=

{
n − t + 2 −

⌊
n−t+2
m+1

⌋
−

⌈
n−t+2
m+1

⌉
, t ≤ n + 1 − m;

m − 1, t > n + 1 − m.
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Also, we proved that
sdepth(S/It

n,m) ≥ depth(S/It
n,m) and sdepth(It

n,m) ≥ depth(It
n,m).

The scope of our paper is to obtain similar results for powers of the ideal Jn,m. Let
n > m ≥ 2 and t ≥ 1. For m = 2, Mihn, Trung and Vu [10] proved that

depth(S/J t
n,2) =

⌈
n − t + 1

3

⌉
for all 2 ≤ t <

⌈
n + 1

2

⌉
.

Let d = gcd(n, m) and let t0 ≤ n − 1 be maximal with the property that there
exists an integer α such that mt0 = αn+d. In Theorem 2.5, we prove that if d = 1
then

sdepth(S/J t
n,m) = depth(S/J t

n,m) = 0 for all t ≥ t0.

Also, we prove that if d > 1 then

depth(S/J t
n,m) ≤ d − 1 and sdepth(S/J t

n,m) ≤ n − n

d
for all t ≥ t0.

In Corollary 2.8, we prove that if n is odd, then

sdepth(S/J t
n,n−2) = depth(S/J t

n,n−2) = 0 for all t ≥ n − 1
2 .

Also, we prove that if n is even, then

depth(S/J t
n,n−2) ≤ 1 and sdepth(S/J t

n,n−2) ≤ n

2 for all t ≥ n − 1.

In Theorem 2.10, we prove that
depth(S/J t

n,m) ≤ φ(n − 1, m, t) + 1.

In Theorem 3.1, we prove that

sdepth(S/J t
n,n−1) = depth(S/J t

n,n−1) =
{

n − t − 1, t ≤ n − 1;
0, t ≥ n.

In Theorem 3.4, we show that if n = mt − 1 then
sdepth(S/Js

n,m) = depth(S/Js
n,m) = 0 for all s ≥ t.

Also, for n ≥ mt, we prove that
sdepth(S/J t

n,m), depth(S/J t
n,m) ≥ φ(n − 1, m, t).

In the last section, we provide a code in CoCoA that computes depth(S/J t
n,m).

1. Preliminaries

First, we recall the well-known depth lemma; see, for instance, [15, Lemma 2.3.9].

Lemma 1.1 (Depth lemma). If 0 → U → M → N → 0 is a short exact sequence
of modules over a local ring S, or a Noetherian graded ring with S0 local, then

(1) depth M ≥ min{depth N, depth U}.
(2) depth U ≥ min{depth M, depth N + 1}.
(3) depth N ≥ min{depth U − 1, depth M}.
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Let M be a Zn-graded S-module. A Stanley decomposition of M is a direct
sum D : M =

⊕r
i=1 miK[Zi] as a Zn-graded K-vector space, where mi ∈ M is

homogeneous with respect to Zn-grading, Zi ⊂ {x1, . . . , xn} such that miK[Zi] =
{umi : u ∈ K[Zi]} ⊂ M is a free K[Zi]-submodule of M . We define sdepth(D) =
mini=1,...,r |Zi| and sdepth(M) = max{sdepth(D) | D is a Stanley decomposition
of M}. The number sdepth(M) is called the Stanley depth of M .

Herzog, Vladoiu and Zheng showed in [9] that sdepth(M) can be computed in a
finite number of steps if M = I/J , where J ⊂ I ⊂ S are monomial ideals. In [13],
Rinaldo gave a computer implementation for this algorithm, in the computer al-
gebra system CoCoA. We say that a Zn-graded S-module M satisfies the Stanley
inequality if

sdepth(M) ≥ depth(M).
In [2], J. Apel restated a conjecture firstly given by Stanley in [14], namely that any
Zn-graded S-module M satisfies the Stanley inequality. This conjecture proves to
be false, in general, for M = S/I and M = J/I, where 0 ̸= I ⊂ J ⊂ S are
monomial ideals (see [7]), but remains open for M = I.

The explicit computation of the Stanley depth it is a difficult task, even in very
particular cases, and it is interesting in itself. Also, although the Stanley conjecture
was disproved in the most general setup, it is interesting to find large classes of
ideals that satisfy the Stanley inequality. For a friendly introduction to the topic
of Stanley depth, we refer the reader to [8].

In [12], Asia Rauf proved the analog of Lemma 1.1 for sdepth:
Lemma 1.2. If 0 → U → M → N → 0 is a short exact sequence of Zn-graded
S-modules, then sdepth(M) ≥ min{sdepth(U), sdepth(N)}.

We recall the following well-known result (see, for instance, [15, Lemma 2.3.10]):
Lemma 1.3. Let M be a graded S-module and f ∈ m = (x1, . . . , xn) ⊂ S a
homogeneous polynomial such that f is regular on M . Then depth(M/fM) =
depth(M) − 1.

We also recall the following well-known results. See, for instance, [12, Corol-
lary 1.3], [5, Proposition 2.7], [4, Theorem 1.1], [9, Lemma 3.6] and [12, Corol-
lary 3.3].
Lemma 1.4. Let I ⊂ S be a monomial ideal and let u ∈ S be a monomial such
that u /∈ I. Then

(1) sdepth(S/(I : u)) ≥ sdepth(S/I).
(2) depth(S/(I : u)) ≥ depth(S/I).

Lemma 1.5. Let I ⊂ S be a monomial ideal and let u ∈ S be a monomial such
that I = u(I : u). Then

(1) sdepth(S/(I : u)) = sdepth(S/I).
(2) depth(S/(I : u)) = depth(S/I).

Lemma 1.6. Let I ⊂ S be a monomial ideal and let S′ = S[xn+1]. Then
(1) sdepthS′(S′/IS′) = sdepthS(S/I) + 1.
(2) depthS′(S′/IS′) = depthS(S/I) + 1.
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Lemma 1.7. Let I ⊂ S be a monomial ideal. Then the following assertions are
equivalent:

(1) m = (x1, . . . , xn) ∈ Ass(S/I).
(2) depth(S/I) = 0.
(3) sdepth(S/I) = 0.

Let 2 ≤ m < n be two integers. We consider the ideal

In,m = (x1 · · · xm, x2 · · · xm+1, . . . , xn−m+1 · · · xn) ⊂ S.

We denote

φ(n, m, t) :=
{

n − t + 2 −
⌊

n−t+2
m+1

⌋
−

⌈
n−t+2
m+1

⌉
, t ≤ n + 1 − m;

m − 1, t > n + 1 − m.

We recall the main result of [3]:

Theorem 1.8 (See [3, Theorem 2.6]). With the above notation, we have:
(1) sdepth(S/It

n,m) ≥ depth(S/It
n,m) = φ(n, m, t) for any 1 ≤ m ≤ n and

t ≥ 1.
(2) sdepth(S/It

n,m) ≤ sdepth(S/In,m) = φ(n, m, 1).

2. Main results

We consider the following ideal:

Jn,m = In,m + (xn−m+2 · · · xnx1, xn−m+3 · · · xnx1x2, . . . , xnx1 · · · xm−1).

Let d = gcd(n, m) and let t0 := t0(n, m) be the maximal integer such that t0 ≤ n−1
and there exists a positive integer α such that

mt0 = αn + d.

Let t ≥ t0 be an integer. Let w = (x1x2 · · · xn)α, wt = w · (x1 · · · xm)t−t0 , r := n
d

and s := m
d . If d > 1, we consider the ideal

Un,d = (x1, xd+1, . . . , xd(r−1)+1)∩(x2, xd+2, . . . , xd(r−1)+2)∩· · ·∩(xd, x2d, . . . , xrd).

Firstly, we state the following lemma:

Lemma 2.1. The map Z/nZ
r·(Z/nZ)

·s−→ Z/nZ
r·(Z/nZ) is bijective.

Proof. It follows from the fact that gcd(s, r) = 1. □

As usual, if J ⊂ S is a monomial ideal, we denote by G(J) the set of minimal
monomial generators of J .

Lemma 2.2. With the above notations, we have:
(1) If d = 1 then (J t

n,m : wt) = m for all t ≥ t0.
(2) If d > 1 then (J t

n,m : wt) = Un,d for all t ≥ t0.
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Proof. (1) Note that t̂0 = m̂−1 in Z/nZ, hence t0 and α are uniquely defined. We
claim that it is enough to show the assertion for t = t0, that is, (J t0

n,m : w) = m.
Assume that (J t0

n,m : w) = m and t > t0. Since xjw ∈ J t0
n,m for all 1 ≤ j ≤ n,

it follows that xjwt = xjw(x1 · · · xm)t−t0 ∈ J t
n,m for all 1 ≤ j ≤ n, and therefore

m ⊂ (J t
n,m : wt). On the other hand, wt /∈ J t

n,m since deg(wt) = mt − 1 and J t
n,m

is generated in degree mt. Hence (J t
n,m : wt) = m, and the claim is proved.

Since Jn,m is invariant to circular permutations of variables and w /∈ J t0
n,m, it is

enough to show that

x1w = xα+1
1 xα

2 · · · xα
n ∈ G(J t0

n,m). (2.1)

Indeed, one can easily check that

x1w =
t0−1∏
j=0

(xℓ(mj+1) · · · xℓ(mj+m)),

where ℓ(k) ∈ {1, . . . , n} is the unique integer with k ≡ ℓ(k) (mod n).
As xℓ(mj+1) · · · xℓ(mj+m) ∈ G(Jn,m) for all 0 ≤ j ≤ t0 − 1, we proved (2.1) and

thus (1).
(2) Note that deg(wt) = αn + m(t − t0) = mt − d, while J t

n,m is minimally gen-
erated by monomials of degree mt. Also, as wt = (x1 · · · xm)t−t0w and x1 · · · xm ∈
G(Jn,m), we have that

(J t0
n,m : w) ⊆ (J t

n,m : wt). (2.2)

Let u = xa1
1 xa2

2 · · · xan
n ∈ G(J t

n,m). Note that if u ∈ G(Jn,m) then supp(u) contains
exactly s = m

d variables whose indices are congruent with j modulo d, where
0 ≤ j ≤ d − 1. Therefore, as d = gcd(n, m), it follows that

a1 + ad+1 + · · · + ad(r−1)+1 = a2 + ad+2 + · · · + ad(r−1)+2 = · · ·

= ad + a2d + · · · + ard = tm

d
.

(2.3)

Similarly, if we rewrite wt = (x1 · · · xn)α(x1 · · · xm)t−t0 as wt = xb1
1 xb2

2 · · · xbn
n then

we have

b1 + bd+1 + · · · + bd(r−1)+1 = · · · = bd + b2d + · · · + brd = nα

d
+ m(t − t0)

d
= tm

d
− 1.

(2.4)
Let v ∈ S be a monomial such that vwt ∈ J t

n,m. It follows that there exists
u ∈ G(J t

n,m) such that u|vwt. From (2.3) and (2.4) it follows that for every
0 ≤ j ≤ d − 1 there exists kj ∈ {1, . . . , n} with kj ≡ j (mod d) such that xkj

|v.
Therefore, v ∈ Un,d and thus (J t

n,m : wt) ⊆ Un,d. Hence, from (2.2), the identity
(J t

n,m : wt) = Un,d follows from

Un,d ⊆ (J t0
n,m : w). (2.5)

Let v = xℓ1xℓ2 · · · xℓd
∈ G(Un,d), where ℓj ≡ j (mod d). In order to prove (2.5), it

suffices to show that vw ∈ G(J t0
n,m).
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Since mt0 = αn+d, by dividing with d, it follows that st0 = αr+1 and therefore
t0 = s−1 in Z/rZ. If t0 = ℓ with 0 ≤ ℓ ≤ r − 1, then we claim that

t0 = ℓ + n − r ≥ n − r = r(d − 1). (2.6)

Let t′
0 = ℓ + n − r. Since t′

0 = t0 = s−1, we can write ℓs = βr + 1 for some β and
thus

st′
0 = s(ℓ + n − r) = βr + s(n − r) + 1 = (β + s(d − 1))r + 1 = α′r + 1,

with α′ = β + s(d − 1). Hence mt′
0 = α′r + d. Since t′

0 = t0 in Z/rZ and t0 ≤ n − 1
is the greatest integer with mt0 = αr + d, it follows that t0 = t′

0. Hence, we proved
(2.6).

For simplicity, if j > n, we denote by xj the variable xℓ(j), where 1 ≤ ℓ(j) ≤ n
such that j ≡ ℓ(j) (mod n). See also the proof of (1).

Given a monomial u = xixi+1 · · · xi+m−1 ∈ G(Jn,m), we let xmin(u) = xi and
xmax(u) = xi+m−1 (with the above convention).

We apply the following algorithm:
(1) We let u1 := xℓd

xℓd+1 · · · xℓd+m−1, where v = xℓ1 · · · xℓd
; see above.

(2) Assume we defined u1, . . . , uk, where 1 ≤ k ≤ t0 − 1. If xmax(uk) = xℓj for
some 1 ≤ j ≤ d − 1, then we let uk+1 = xℓj

xℓj+1 · · · xℓj+m−1. Otherwise,
we let uk+1 := xmax(uk)+1 · · · xmax(uk)+m.

(3) We repeat step (2) until k = t0.
We claim that vw = u1u2 · · · ut0 . Obviously, deg(vw) = mt0 = deg(u1 · · · ut0).

Let k1 be the minimal index with max(uk1) = d − 1. We claim that k1 ≤ r.
Indeed, if k1 ≥ r then u1 = xℓd

· · · xℓd+m−1, . . . , ur = xℓd+(r−1)m · · · xℓd+rm−1.
From Lemma 2.1 and the fact that m = sd, it follows that

{ℓd + m − 1, . . . , ℓd + rm − 1} = {d − 1, 2d − 1, . . . , rd − 1},

using the above convention. Since ℓd−1 ≡ (d−1) (mod d), from all the above, it fol-
lows that ℓd−1 = ℓd+rm−1 and hence k1 = r. Note that uk1 = xℓd−1 · · · xℓd−1+m−1.

Similarly, let k2 be the minimal index with max(uk2) = d − 2. Using the same
line of arguing, it follows that k2 ≤ 2r. Inductively, let kj be the minimal index
with max(ukj

) = d − j, for j ≤ d − 1. Then kj ≤ jr. In particular, we have that
kd−1 ≤ (d − 1)r ≤ t0. Also, for k > kd−1, from the definition of uk’s, we have that
max(uk) /∈ {ℓ1, . . . , ℓd−1}.

Now, from all the above, it is easy to see that u1 · · · ut0 = vw, as required. □

In the following example, we show how the algorithm given in the proof of
Lemma 2.2 (2) works.

Example 2.3. Let n = 12 and m = 8. Then d = gcd(n, m) = 4, r = 3 and s = 2.
Note that 8 · 11 = 7 · 12 + 4 and t0 = 11 is the largest integer ≤ n − 1 = 11 with
t0m = αn + d. Also α = 7.

We have w := (x1 · · · x12)7 and U12,4 = (x1, x5, x9)∩(x2, x6, x10)∩(x3, x7, x11)∩
(x4, x8, x12).

Let v := x5x2x11x4 ∈ U12,4. Then ℓ1 = 5, ℓ2 = 2, ℓ3 = 11 and ℓ4 = 4.
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We apply the aforementioned algorithm:
• We let u1 := x4x5x6x7x8x9x10x11.
• Since ℓ3 = 11, it follows that k1 = 1 and u2 = x11x12x1x2x3x4x5x6.
• Since ℓ2 ̸= 6, we let u3 = x7x8x9x10x11x12x1x2.
• Since ℓ2 = 2, it follows that k2 = 3 and u4 = x2x3x4x5x6x7x8x9.
• Since ℓ1 ̸= 9, we let u5 = x10x11x12x1x2x3x4x5.
• Since ℓ1 = 5, it follows that k3 = 5 and u6 = x5x6x7x8x9x10x11x12.

From now on, the algorithm goes smoothly, and we have: u7 = x1x2x3x4x5x6x7x8,
u8 = x9x10x11x12x1x2x3x4, u9 = u6, u10 = u7 and u11 = u8. It is easy to see that
u1u2 · · · u11 = vw. Therefore vw ∈ J11

12,8, as required.

The following result is elementary. However, we give a proof for the sake of
completeness.

Lemma 2.4. Let d ≥ 1 and Z1 ∪ Z2 ∪ · · · ∪ Zd = {x1, . . . , xn} be a partition, i.e.,
|Zi| > 0 and Zi ∩ Zj = ∅ for all i ̸= j. Let Pi = (Zi) ⊂ S for 1 ≤ i ≤ d and
U := P1 ∩ · · · ∩ Pd. Then depth(S/U) = d − 1.

Proof. We use induction on d ≥ 1. If d = 1 then Z1 = {x1, . . . , xn} and U = m =
(x1, . . . , xn). Hence, there is nothing to prove.

Without loss of generality, we can assume that Z1 ∪ · · · ∪ Zd−1 = {x1, . . . , xk}
for some k < n and Zd = {xk+1, . . . , xn}. From the induction hypothesis, we have
that

depth(Sk/(P1 ∩ · · · ∩ Pd−1)) = d − 2, where Sk = K[x1, . . . , xk].
From [11, Lemma 1.1] it follows that

depth(S/(P1 ∩ · · · ∩ Pd))
= depth(Sk/(P1 ∩ · · · ∩ Pd−1)) + depth(K[xk+1, . . . , xn]/Pd) + 1 = d − 1,

as required. □

Theorem 2.5. With the above notations, we have:
(1) If d = 1 then sdepth(S/J t

n,m) = depth(S/J t
n,m) = 0 for all t ≥ t0.

(2) If d > 1 then depth(S/J t
n,m) ≤ d − 1 for all t ≥ t0.

(3) If d > 1 then sdepth(S/J t
n,m) ≤ sdepth(S/Un,d) ≤ n − n

d for all t ≥ t0.

Proof. (1) From Lemma 2.2 (1), it follows that m ∈ Ass(S/J t
n,m) for all t ≥ t0.

Therefore, the required conclusion follows from Lemma 1.7.
(2) From Lemma 2.2 (2), it follows that (J t

n,m : wt) = Un,d. From Lemma 1.4 (2)
it follows that

depth(S/J t
n,m) ≤ depth(S/Un,d).

On the other hand, from Lemma 2.4 it follows that depth(S/Un,d) = d − 1 and
therefore depth(S/J t

n,m) ≤ d − 1.
(3) Similarly, from Lemma 1.4 (1) it follows that

sdepth(S/J t
n,m) ≤ sdepth(S/Un,d).
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On the other hand, since Un,d = (xd, . . . , xdr)∩U ′, where U ′ = (x1, . . . , xr(d−1)+1)∩
· · · ∩ (xd−1, . . . , xdr−1), from [5, Theorem 1.3] it follows that

sdepth(S/Un,d) ≤ sdepth(S/(xd, . . . , xdr)) = n − r = n − n

d
,

as required. □

Our computer experiments in CoCoA, using the code given in Section 4, lead us
to propose the following conjecture:

Conjecture 2.6. We have that
depth(S/J t

n,m) ≥ d − 1 for all t ≥ 1.

Remark 2.7. Let n > m ≥ 2 be two integers and let d := gcd(n, m). From Theo-
rem 2.5 we have that depth(S/J t

n,m) ≤ d−1 for all t ≥ t0. Hence, if Conjecture 2.6
is true, then

lim
t→∞

depth(S/J t
n,m) = d − 1.

Corollary 2.8. We have that:
(1) If n is odd, then sdepth(S/J t

n,n−2) = depth(S/J t
n,n−2) = 0 for all t ≥ n−1

2 .
(2) If n is even, then depth(S/J t

n,n−2) ≤ 1 for all t ≥ n − 1.
(3) If n is even, then sdepth(S/J t

n,n−2) ≤ n
2 for all t ≥ n − 1.

Proof. (1) Since n is odd, we have d = gcd(n, n − 2) = 1. It is easy to see that
t0 = n−1

2 and α = n−1
3 . Hence, from Theorem 2.5 (1) it follows that

sdepth(S/J t
n,n−2) = depth(S/J t

n,n−2) = 0 for all t ≥ n − 1
2 .

(2) Since n is even, we have d = gcd(n, n−2) = 2. It is easy to see that t0 = n−1
and α = n − 3. From Theorem 2.5 (2) it follows that

depth(S/J t
n,n−2) = 1 for all t ≥ n − 1.

(3) As in the proof of (2), from Theorem 2.5 (3) it follows that

sdepth(S/J t
n,n−2) ≤ n

2 for all t ≥ n − 1.

Hence, the proof is complete. □

Lemma 2.9. Let n > m ≥ 2 and t ≥ 1 be some integers. Then
(J t

n,m, xn) = (It
n−1,m, xn).

Proof. The inclusion ⊇ is obvious. The converse inclusion follows from the obser-
vation that a minimal monomial generator of Jn,m which is not divisible by xn

belongs to In−1,m. □

Theorem 2.10. Let n > m ≥ 2 and t ≥ 1 be some integers. Then:
(1) depth(S/J t

n,m) ≤ φ(n − 1, m, t) + 1.
(2) If depth(S/(J t

n,m : xn)) > depth(S/J t
n,m) then depth(S/J t

n,m) = φ(n −
1, m, t).
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Proof. (1) We consider the short exact sequence

0 → S/(J t
n,m : xn) → S/J t

n,m → S/(J t
n,m, xn) → 0. (2.7)

From Lemma 2.9 and Theorem 1.8 it follows that

depth(S/(J t
n,m, xn)) = depth(S/(It

n−1,m, xn)) = φ(n − 1, m, t).

Let s := depth(S/(J t
n,m : xn)) and d := depth(S/J t

n,m). From Lemma 1.4 (2), we
have that s ≥ d. Therefore, according to Lemma 1.1, it follows that

φ(n − 1, m, t) ≥ min{s − 1, d} ≥ min{d − 1, d} = d − 1.

Hence, d ≤ φ(n − 1, m, t) + 1, as required.
(2) As in the proof of (1), it follows from (2.7) and Lemma 1.1. □

3. Some special cases

We use the notations from the previous section.

Theorem 3.1. We have that

sdepth(S/J t
n,n−1) = depth(S/J t

n,n−1) =
{

n − t − 1, t ≤ n − 2
0, t ≥ n − 1.

Proof. Since d = gcd(n, m) = gcd(n, n − 1) = 1, it follows that t0 := t0(n, n − 1) =
n − 1, since mt0 = (n − 1)2 = (n − 2)n + 1 = αn + d. Therefore, according to
Theorem 2.5 (1), the conclusion follows for t ≥ n − 1. Now, assume t ≤ n − 2.

If n = 3, then t = 1 and it is an easy exercise to show that

sdepth(S/J3,2) = depth(S/J3,2) = 1 = n − t − 1.

Now, assume n ≥ 4 and t ≤ n − 2. We consider the ideals

Lj := (J t
n,n−1 : xj

n) for 0 ≤ j ≤ t.

By straightforward computations, we have

Lj = J t−j
n,n−1(Jj

n−1,n−2S) for 0 ≤ j ≤ t (3.1)

and

(Lj , xn) = ((x1 · · · xn−1)t−j(Jj
n−1,n−2S), xn) for 0 ≤ j ≤ t − 1. (3.2)

We consider the short exact sequences
0 → S/L1 → S/L0 → S/(L0, xn) → 0
0 → S/L2 → S/L1 → S/(L1, xn) → 0

...
0 → S/Lt → S/Lt−1 → S/(Lt−1, xn) → 0.

(3.3)

From (3.2), the induction hypothesis and Lemma 1.5 it follows that

sdepth(S/(Lj , xn)) = depth(S/(Lj , xn)) = n − j − 2 for all 0 ≤ j ≤ t − 1. (3.4)
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On the other hand, from (3.1) we have Lt = (J t
n−1,n−2S). Hence, from the induc-

tion hypothesis and Lemma 1.6 it follows that
sdepth(S/Lt) = depth(S/Lt) = (n − 1 − t − 1) + 1 = n − 1 − t. (3.5)

From (3.4), (3.5) and the short exact sequences (3.3) we deduce inductively that
sdepth(S/Lj), depth(S/Lj) ≥ n − 1 − t for all 0 ≤ j ≤ t − 1. (3.6)

On the other hand, from Lemma 1.4 we have
depth(S/L0) ≤ depth(S/Lt) and sdepth(S/L0) ≤ sdepth(S/Lt). (3.7)

Since L0 = J t
n,n−1, from (3.5), (3.6) and (3.7) it follows that

sdepth(S/J t
n,n−1) = depth(S/J t

n,n−1) = n − t − 1,

which completes the proof. □

Remark 3.2. Let Sn+m−1 := K[x1, x2, . . . , xn+m−1]. We note that
Sn+m−1

(It
n+m−1,m, x1 − xn+1, x2 − xn+2, . . . , xm−1 − xn+m−1)

∼=
S

J t
n,m

. (3.8)

Assume that m = n − 1. It is not difficult to see that
x1 − xn+1, x2 − xn+2, . . . , xn−2 − x2n−2 is a regular sequence on S2n−2/It

2n−2,n−1.
(3.9)

From (3.9), Lemma 1.3, (3.8) and Theorem 1.8 it follows that
depth(S/J t

n,n−1) = depth(S2n−2/It
2n−2,n−1) = φ(2n − 2, n − 1, t) − n + 2,

from where we deduce the formula given in Theorem 3.1 for depth(S/J t
n,n−1).

Unfortunately, this method is not useful in the computation of sdepth(S/J t
n,n−1).

We also mention that the sequence x1 − xn+1, x2 − xn+2, . . . , xn−2 − x2n−2 is
not regular when n > m + 1, therefore we cannot use (3.8) in order to compute (or
at least to give some bounds for) depth(S/J t

n,m).

Lemma 3.3. Let m, t ≥ 2 and n ≥ mt − 1 be some integers, and L = (J t
n,m :

(x1x2 · · · xmt−1)). We have that:
(1) If n = mt − 1 then L = m = (x1, x2, . . . , xn).
(2) If n = mt then L = (xm, x2m, . . . , xmt).
(3) If mt < n ≤ m(t + 1) then L = (xm, x2m, . . . , xmt, xn).
(4) If n > m(t + 1) then L = (xm, . . . , xmt, xn) + V , where

V = (xmt+1 · · · xmt+m, xmt+2 · · · xmt+m+1, . . . , xn−m · · · xn−1)t

⊂ K[xmt+1, . . . , xn−1].

Moreover, V ∼= It
n−mt−1,m.

Proof. (1) As in the proof of Lemma 2.2, we use the convention
j = n + j = 2n + j = · · · for all 1 ≤ j ≤ n.

We fix 1 ≤ i ≤ n and we define inductively the monomials u1 := xixi+1 · · · xi+m−1
and uk := xmk+1xmk+2 · · · xmk+m, where m1 = i and mk = mk−1+m for 2 ≤ k ≤ t.
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Obviously, uk ∈ G(Jn,m) for all 1 ≤ k ≤ t, thus u1u2 · · · ut ∈ G(J t
n,m). On the

other hand, it is easy to see that

xi · (x1x2 · · · xmt−1) = u1u2 · · · ut.

Therefore, xi ∈ L. Since i was arbitrarily chosen, it follows that m ⊂ L. Obviously,
L ̸= S, since x1x2 · · · xmt−1 /∈ J t

n,m. Therefore L = m, as required.
(2) Similarly to (1), we can deduce that xm, x2m, . . . , xmt ∈ L. For instance, we

have

xm · (x1x2 · · · xmt−1)
= (x1 · · · xm)(xm · · · x2m−1)(x2m · · · x3m−1) · · · (xmt−m · · · xmt−1) ∈ J t

n,m.

Also, it is easy to see that xj /∈ L for any j /∈ {m, 2m, . . . , mt}. Since

(J t
n,m, xm, x2m, . . . , xmt) = (xm, . . . , xmt),

the conclusion follows immediately.
(3) The proof is similar to the proof of (2), with the remark that xn ∈ L, since

xn(x1x2 · · · xmt−1) = (xnx1 · · · xm−1)(xm · · · x2m−1) · · · (x(t−1)m · · · xtm−1) ∈ J t
n,m.

(4) As in the previous cases, it is easy to see that (xm, . . . , xmt, xn) ⊂ L and
xj /∈ L for any j /∈ {m, . . . , mt, n}. Also, using similar arguments as in the proof
of Lemma 2.9, we deduce that

(J t
n,m, xm, x2m, . . . , xmt) = (xm, . . . , xmt, xn) + V.

Hence, we get the required conclusion. □

Using the above lemma, we are able to prove the following result:

Theorem 3.4. Let m, t ≥ 2 and n ≥ mt − 1 be some integers. We have that:
(1) If n = mt − 1 then sdepth(S/Js

n,m) = depth(S/Js
n,m) = 0 for all s ≥ t.

(2) If n ≥ mt then sdepth(S/J t
n,m) ≥ φ(n − 1, m, t).

(3) If n ≥ mt then φ(n − 1, m, t) + 1 ≥ depth(S/J t
n,m) ≥ φ(n − 1, m, t).

Proof. Assume n = mt − 1. From Lemma 3.3 (1) it follows that

(J t
n,m : w) = m, where w := x1x2 · · · xn. (3.10)

Let ws = w · (x1 · · · xm)s−t. Since ws /∈ Js
n,m, from (3.10) it follows that

(Js
n,m : ws) = m.

Therefore, m ∈ Ass(S/Js
n,m) and (1) follows from Lemma 1.7.

Now, assume n ≥ mt. Let L0 = J t
n,m, Lj := (L0 : x1 · · · xj) for 1 ≤ j ≤ mt − 1,

and Uj = (Lj−1, xj) for 1 ≤ j ≤ mt − 1. We consider the short exact sequences

0 → S/Lj → S/Lj−1 → S/Uj → 0 for 1 ≤ j ≤ mt − 1. (3.11)

Note that, according to Lemma 2.9, we have that

(L0, xj) ∼= (It
n−1,m, xn) for all 1 ≤ j ≤ mt − 1, (3.12)
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where It
n−1,m ⊂ S′ = K[x1, . . . , xn−1] and the isomorphism is given by the circular

permutation of variables which send j to n. On the other hand, we have

Uj = (Lj−1, xj) = ((J t
n,m : x1 . . . xj−1), xj)

= ((J t
n,m, xj) : x1 · · · xj−1) ∼= (It

n−1,m : xn−j+1 · · · xn−1)
(3.13)

for all 1 ≤ j ≤ mt − 1. From (3.12), (3.13), Lemma 1.4 and Theorem 1.8 it follows
that

depth(S/Uj) ≥ depth(S′/It
n−1,m) = φ(n − 1, m, t) (3.14)

and

sdepth(S/Uj) ≥ sdepth(S′/It
n−1,m) ≥ φ(n − 1, m, t). (3.15)

Also, from Lemma 1.4, we have that

depth(S/L0) ≤ depth(S/L1) ≤ · · · ≤ depth(S/Ltm−1) (3.16)

and

sdepth(S/L0) ≤ sdepth(S/L1) ≤ · · · ≤ sdepth(S/Ltm−1). (3.17)

We consider three cases:
(i) If n = mt, then according to Lemma 3.3 (2), it follows that

sdepth(S/Ltm−1) = depth(S/Ltm−1) = n − t.

(ii) If mt < n ≤ m(t + 1), then according to Lemma 3.3 (3), it follows that

sdepth(S/Ltm−1) = depth(S/Ltm−1) = n − t − 1.

(iii) If n > m(t + 1), then according to Lemma 3.3 (4), it follows that

sdepth(S/Ltm−1) ≥ depth(S/Ltm−1) = (m − 1)t + φ(n − mt − 1, m, t).

In all of the above cases (i), (ii) and (iii), it is easy to see that the following
inequalities hold:

sdepth(S/Ltm−1) ≥ depth(S/Ltm−1) ≥ φ(n − 1, m, t). (3.18)

From (3.14), (3.15), (3.16), (3.17), (3.18), the short exact sequences (3.11), and
Lemmas 1.1 and 1.2, it follows that

depth(S/J t
n,m) ≥ φ(n − 1, m, t) and sdepth(S/J t

n,m) ≥ φ(n − 1, m, t).

Also, from Theorem 2.10 (1), it follows that depth(S/J t
n,m) ≤ φ(n − 1, m, t) + 1.

Thus, we complete the proof of (2) and (3). □

Remark 3.5. Note that, in the case (1) of Theorem 3.4, we have that d =
gcd(n, m) = 1. However, the result is stronger than the result from Theorem 2.5 (1),
since t0 = n − 1 is larger than t = n−1

m .
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4. A CoCoA code

The following code in CoCoA computes depth(S/J t
n,m) with S = Q[x1, . . . , xn]:

N := 8; M := 6; T := 4;
// Here one can choose other values.
Use R ::= QQ[x[1..N ]];
J := Ideal(0);
For K := 1 To N Do

U := 1;
For L := 1 To M Do

If (K + L > N) Then U := U ∗ x[K + L − N ];
Else U := U ∗ x[K + L]; EndIf;

EndFor;
J := J + Ideal(U);

EndFor;
// J is the ideal Jn,m.
I := Ideal(1);
For S := 1 To T Do I := I ∗ J ; EndFor;
// I is the ideal J t

n,m.
Depth(R/I);
1;
// depth(S/J4

8,6) = 1, where S := Q[x1, . . . , x8].

Note that d = gcd(n, m) = gcd(8, 6) = 1.
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[7] A. M. Duval, B. Goeckner, C. J. Klivans, and J. L. Martin, A non-partitionable Cohen–
Macaulay simplicial complex, Adv. Math. 299 (2016), 381–395. DOI MR Zbl

[8] J. Herzog, A survey on Stanley depth, in Monomial ideals, computations and applications,
Lecture Notes in Math. 2083, Springer, Heidelberg, 2013, pp. 3–45. DOI MR Zbl

[9] J. Herzog, M. Vladoiu, and X. Zheng, How to compute the Stanley depth of a monomial
ideal, J. Algebra 322 no. 9 (2009), 3151–3169. DOI MR Zbl

[10] N. C. Minh, T. N. Trung, and T. Vu, Depth of powers of edge ideals of cycles and trees,
2023. arXiv:2308.00874v1 [math.AC].

[11] A. Popescu, Special Stanley decompositions, Bull. Math. Soc. Sci. Math. Roumanie (N.S.)
53(101) no. 4 (2010), 363–372. MR Zbl

[12] A. Rauf, Depth and Stanley depth of multigraded modules, Comm. Algebra 38 no. 2 (2010),
773–784. DOI MR Zbl

[13] G. Rinaldo, An algorithm to compute the Stanley depth of monomial ideals, Matematiche
(Catania) 63 no. 2 (2008), 243–256. MR Zbl

[14] R. P. Stanley, Linear Diophantine equations and local cohomology, Invent. Math. 68 no. 2
(1982), 175–193. DOI MR Zbl

[15] R. H. Villarreal, Monomial algebras, second ed., Monogr. Res. Notes Math., CRC Press,
Boca Raton, 2015. DOI MR Zbl

Silviu Bălănescu
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