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ON A NON-STANDARD CHARACTERIZATION
OF THE Ap CONDITION

ANDREI K. LERNER

Abstract. The classical Muckenhoupt Ap condition is necessary and suffi-
cient for the boundedness of the maximal operator M on Lp(w) spaces. In
this paper we obtain another characterization of the Ap condition. As a result,
we show that some strong versions of the weighted Lp(w) Coifman–Fefferman
and Fefferman–Stein inequalities hold if and only if w ∈ Ap. We also give new
examples of Banach function spaces X such that M is bounded on X but not
bounded on the associate space X′.

1. Introduction

Let M be the Hardy–Littlewood maximal operator defined by

Mf(x) := sup
Q∋x

1
|Q|

∫
Q

|f |,

where the supremum is taken over all cubes Q ⊂ Rn containing the point x. By a
weight we mean a non-negative locally integrable function on Rn. A weight w ∈ Ap,
p > 1, if

[w]Ap
:= sup

Q

(
1

|Q|

∫
Q

w

)(
1

|Q|

∫
Q

w− 1
p−1

)p−1
< ∞.

By the classical Muckenhoupt theorem [11], M is bounded on Lp(w) iff w ∈ Ap.
Denote by Np, p > 1, the class of weights satisfying∫

Rn

w(x)
(1 + |x|)np

dx < ∞.

Since Mf(x) ≥ C
(1+|x|)n whenever f is not identically zero, we obtain Ap ⊂ Np. It

is obvious that this inclusion is strict (for example, any bounded weight belongs to
Np while there is a variety of bounded weights not belonging to Ap).
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692 ANDREI K. LERNER

Now, denote by Wp, p > 1, the class of weights w ∈ Np for which there exists a
constant C > 0 such that∫

Rn

(
M(Mf)

)p
w ≤ C

∫
Rn

(Mf)pw

whenever the right-hand side is finite. Then, we trivially have that Ap ⊆ Wp. At
first glance, it seems that this inclusion is also strict. However, this is still not clear
to us. We formulate this question as follows.

Question 1.1. Does there exist a weight w ∈ Wp \ Ap?

In this paper we obtain a result related to this question that is of some indepen-
dent interest. To state it, we need a definition of the Cp class of weights.

We say that w ∈ Cp, p > 0, if there exist C, δ > 0 such that for every cube Q
and any subset E ⊂ Q, ∫

E

w ≤ C

(
|E|
|Q|

)δ ∫
Rn

(MχQ)pw.

This condition was introduced by Muckenhoupt [12], and it plays an important
role in the study of weighted Coifman–Fefferman and Fefferman–Stein inequalities
(see, e.g., [2, 15, 17]).

Denote A∞ :=
⋃

p>1 Ap. It is well known that for any p > 1, Ap ⊊ A∞ ⊊ Cp,
that is, the class Cp is much wider than Ap. In particular, a Cp weight may
vanish on a set of positive measure while a weight from Ap must be positive almost
everywhere (see, e.g., [12] or [2]).

Since Ap ⊆ Wp, we have that Ap ⊆ Wp ∩ Cp. Our main result says that in
fact the converse inclusion holds as well and we have the following non-standard
characterization of the Ap condition.

Theorem 1.2. For any p > 1,
Ap = Wp ∩ Cp.

Returning to Question 1.1, observe the following. As we will show below, in
the proof of Theorem 1.2, any weight w in Wp satisfies the doubling condition
(which we denote by w ∈ D), namely, there exists a constant C > 0 such that∫

2Q
w ≤ C

∫
Q

w for every cube Q. Therefore, if there exists a weight w ∈ Wp \ Ap,
such a weight must necessarily belong to D\Cp. But even a construction of weights
in D \ A∞ is rather non-trivial; the first example of such a weight was given by
Fefferman and Muckehnoupt [5]. This only says that an attempt to give a positive
answer to Question 1.1 is not a simple task.

In what follows, we consider several applications of Theorem 1.2, which will
explain our interest in the class Wp.

1.1. An application to the space MLp(w). Let X be a Banach function space
(BFS) over Rn, and let X ′ denote the associate space. We refer to a recent survey
by Lorist and Nieraeth [10] where, in particular, one can find a discussion about
the choice of axioms needed to define the notion of BFS correctly.
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ON A NON-STANDARD CHARACTERIZATION OF THE Ap CONDITION 693

Given a BFS X, denote by MX the space equipped with norm
∥f∥MX := ∥Mf∥X .

Observe that when X := Lp(w), the space MLp(w) was mentioned in Stein’s book
[16, p. 222]. For a general BFS X, the space MX was considered in a recent
paper [8]. In particular, it was shown there that if X is a BFS, then MX is also a
BFS iff 1

1+|x|n ∈ X. It was also proved in [8] that the Fefferman–Stein inequality
on X,

∥Mf∥X ≤ C∥f#∥X ,

holds iff M is bounded on (MX)′. Here f# is the Fefferman–Stein sharp function
defined by

f#(x) := sup
Q∋x

1
|Q|

∫
Q

|f − ⟨f⟩Q|, ⟨f⟩Q := 1
|Q|

∫
Q

f.

Suppose now that X := Lp(w). Then Wp is the class of weights for which M
is bounded on MLp(w). Next, it is well known (see [17]) that the Cp condition
is necessary for the Fefferman–Stein inequality on Lp(w) (or, equivalently, for the
boundedness of M on (MLp(w))′) and Cp+ε, ε > 0, is sufficient. Thus, we obtain
the following corollary from Theorem 1.2.

Corollary 1.3. Let p > 1. If the maximal operator M is bounded on MLp(w) and
on (MLp(w))′, then w ∈ Ap.

It is well known that for many “standard” BFS X, the maximal operator M
is bounded on X iff M is bounded on X ′, and there are only few known non-
trivial examples when this is not true (see a recent work by Nieraeth [13] for a
thorough discussion about this topic). Corollary 1.3 provides a variety of new
examples. Indeed, let X := (MLp(w))′. Take any weight w ∈ Cp+ε \ Ap. Then,
as discussed above, M is bounded on X but, by Corollary 1.3, M is not bounded
on X ′ = MLp(w). Next, observe that if the answer to Question 1.1 is positive,
we would obtain yet more examples. Indeed, taking w ∈ Wp \ Ap, we would
find that M is bounded on MLp(w) but not bounded on (MLp(w))′. Note that
it was conjectured in [13] that if X is an r-convex and s-concave BFS, where
1 < r < s < ∞, then M : X → X iff M : X ′ → X ′. However, the above examples
do not seem to satisfy the convexity/concavity assumptions, and so they probably
cannot be used to disprove this conjecture.

1.2. On some variants of the Coifman–Fefferman and Fefferman–Stein
inequalities. Suppose that T is a singular convolution integral which is non-degen-
erate in the sense of Stein [16, p. 210]. Then T is bounded on Lp(w) iff w ∈ Ap.
Now we have that the same result holds on MLp(w) as well.

Theorem 1.4. Let T be a non-degenerate singular integral operator. Then T is
bounded on MLp(w), p > 1, iff w ∈ Ap.

Observe that the sufficiency of w ∈ Ap trivially follows from the classical theory.
Indeed, if w ∈ Ap, then

∥M(Tf)∥Lp(w) ≤ C∥f∥Lp(w) ≤ C∥Mf∥Lp(w).
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694 ANDREI K. LERNER

However, the necessity of w ∈ Ap is not trivial even for the Hilbert transform.
Here we essentially use a recent result of Nieraeth [13] saying that if X is an order-
continuous BFS and T is a non-degenerate linear operator bounded on X, then
M is bounded on X and X ′ (an earlier version of this result with more restrictive
convexity assumptions on X was obtained by Rutsky [14]). Thus, basically the
necessity part in Theorem 1.4 follows by taking X := MLp(w) and applying Corol-
lary 1.3. There are still some technicalities related to order-continuity of MLp(w),
which will be discussed in Section 3.

Theorem 1.4 can be viewed as a complement to the Coifman–Fefferman inequal-
ity [3] saying that

∥T ∗f∥Lp(w) ≤ C∥Mf∥Lp(w),

where T ∗ stands for the maximal singular integral operator. A sufficient condition
for this estimate to hold is w ∈ Cp+ε, ε > 0 (see [15]). Now, it is easy to show
(this can be proved exactly as [8, Lemma 3.2]) that for every r ∈ (0, 1) and for all
x ∈ Rn,

Mr(Tf)(x) ≤ Cr,n(T ∗f(x) + Mf(x)),
where Mrf := M(|f |r)1/r. Therefore, if w ∈ Cp+ε, then

∥Mr(Tf)∥Lp(w) ≤ Cr,n∥Mf∥Lp(w), r ∈ (0, 1).

It is natural to wonder what happens when r = 1, and whether the condition
w ∈ Cp+ε remains sufficient. Theorem 1.4 shows that this is not the case, and that
the above inequality for r = 1 holds iff w ∈ Ap.

As a simple corollary, we obtain that a similar phenomenon occurs with the
Fefferman–Stein inequality [6] saying that

∥Mf∥Lp(w) ≤ C∥f#∥Lp(w). (1.1)

By [17], the Cp+ε condition is sufficient for (1.1). Suppose now that we change
f# in (1.1) by a smaller operator f#

δ :=
(
(|f |δ)#)1/δ for δ ∈ (0, 1). Then using

that (Tf)#
δ ≤ Cδ,nMf for a singular integral operator T (see, e.g., [1]), we obtain

that T is bounded on MLp(w), and hence w ∈ Ap. Thus, we have the following
corollary.

Corollary 1.5. Suppose that p > 1 and δ ∈ (0, 1). Then the estimate

∥Mf∥Lp(w) ≤ C∥f#
δ ∥Lp(w) (1.2)

holds iff w ∈ Ap.

Observe that there is a simpler way to prove Corollary 1.5, without the use of
Theorem 1.4. Indeed, (1.2) implies (1.1) and hence, by [17], w ∈ Cp. Next, using
that f#

δ ≤ 2Mδf and that, by the Coifman–Rochberg theorem [4], Mδ(Mf) ≤
CMf , we obtain from (1.2) that M is bounded on MLp(w), and it remains to
apply Theorem 1.2.

The paper is organized as follows. In Section 2 we prove Theorem 1.2, and in
Section 3 we prove Theorem 1.4.
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2. Proof of Theorem 1.2

An important role in our proof will be played by the local maximal operator
defined by

mλf(x) := sup
Q∋x

(fχQ)∗(λ|Q|), λ ∈ (0, 1),

where the supremum is taken over all cubes Q ⊂ Rn containing the point x, and
(fχQ)∗(λ|Q|) denotes the non-increasing rearrangement defined by

(fχQ)∗(λ|Q|) := inf{α > 0 : |{x ∈ Q : |f(x)| > α}| ≤ λ|Q|}.

We mention several simple propositions which will be used below.

Proposition 2.1. For any r > 1 and λ ∈ (0, 1), and for all x ∈ Rn,

Mf(x) ≤ r

r − 1λ
r−1

r Mrf(x) + mλf(x).

Proof. By Chebyshev’s inequality, for τ ∈ (0, 1) and for every cube Q,

(fχQ)∗(τ |Q|) ≤ 1
τ1/r

(
1

|Q|

∫
Q

|f |r
)1/r

. (2.1)

Therefore, for x ∈ Q,

1
|Q|

∫
Q

|f | = 1
|Q|

∫ |Q|

0
(fχQ)∗(t) dt =

∫ 1

0
(fχQ)∗(τ |Q|) dτ

≤
(∫ λ

0

1
τ1/r

dτ

)(
1

|Q|

∫
Q

|f |r
)1/r

+
∫ 1

λ

(fχQ)∗(τ |Q|) dτ

≤ r

r − 1λ
r−1

r Mrf(x) + mλf(x),

and the result follows. □

Proposition 2.2. For any λ ∈ (0, 1) and for all x ∈ Rn,
mλ(Mf)(x) ≤ Cλ,nMf(x).

Proof. By (2.1), for every δ > 0,

mλf(x) ≤ 1
λ1/δ

Mδf(x). (2.2)

Next, by the Coifman–Rochberg theorem [4], Mδ(Mf) ≤ Cδ,nMf for δ ∈ (0, 1).
Combining both estimates proves the result. □

The following result is the key ingredient of the proof, and it can be formulated
for a general BFS X.

Theorem 2.3. Let X be a BFS such that 1
1+|x|n ∈ X. The following statements

are equivalent:
(i) M is bounded on MX, that is, there exists a constant C > 0 such that for

every f ∈ MX,
∥MMf∥X ≤ C∥Mf∥X ;
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696 ANDREI K. LERNER

(ii) there exists λ0 ∈ (0, 1) such that for every f ∈ X,

∥Mf∥X ≤ 2∥mλ0f∥X . (2.3)

Proof. Let us prove the implication (i) ⇒ (ii). We will use the well-known fact
(see, e.g., [9]) that if M is bounded on a BFS X, then Mr is bounded on X for
some r > 1. Therefore, the boundedness of M on MX implies that there exist
r > 1 and C > 0 such that

∥Mrf∥X ≤ C∥Mf∥X .

Combining this with Proposition 2.1 yields

∥Mf∥X ≤ C
r

r − 1λ
r−1

r ∥Mf∥X + ∥mλf∥X .

Therefore, taking λ such that C r
r−1 λ

r−1
r = 1

2 proves (2.3) under the assumption
that f ∈ MX.

Take now an arbitrary f ∈ X. For N > 0, set

fN := min(|f |, N)χ{|x|≤N}.

Then fN ∈ MX. Hence, by (2.3) for f ∈ MX we obtain

∥M(fN )∥X ≤ 2∥mλ0(fN )∥X ≤ 2∥mλ0f∥X .

Since fN ↑ |f |, we have M(fN ) ↑ Mf (the proof of this simple fact can be found
in, e.g., [8, Section 2]). Therefore, letting N → ∞ completes the proof of (2.3) for
any f ∈ X by the Fatou property of X.

Now, the implication (ii) ⇒ (i) follows immediately by setting Mf instead of f
in (2.3) and applying Proposition 2.2. This completes the proof. □

Suppose that X := Lp(w). Theorem 2.3 shows that if M is bounded on MLp(w),
then M is bounded on Lp(w) (and hence w ∈ Ap) iff mλ does. But the boundedness
of mλ on Lp(w) follows easily assuming just w ∈ A∞. Indeed, we have the following
proposition.

Proposition 2.4. Let w ∈ A∞. Then the local maximal operator mλ is bounded
on Lp(w) for every p > 0 and λ ∈ (0, 1).

Proof. There exists r > 1 such that w ∈ Ar. Define δ := p
r . Then applying (2.2)

and using that M is bounded on Lr(w), we obtain

∥mλf∥Lp(w) ≤ 1
λ1/δ

∥M(|f |δ)∥r/p
Lr(w) ≤ C∥f∥Lp(w),

and the proof is complete. □

Thus our strategy in the proof of Theorem 1.2 is to deduce that w ∈ A∞. We
will use the following equivalent definition of A∞ (see, e.g., [7, p. 527]): w ∈ A∞ if
there exist C, δ > 0 such that for every cube Q and an arbitrary subset E ⊂ Q,∫

E

w ≤ C

(
|E|
|Q|

)δ ∫
Q

w.
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Proof of Theorem 1.2. By Theorem 2.3, there exists λ0 ∈ (0, 1) such that

∥Mf∥Lp(w) ≤ 2∥mλ0f∥Lp(w). (2.4)

Our goal now is to show that w ∈ A∞. Then (2.4) combined with Proposition 2.4
would imply that M is bounded on Lp(w) and hence w ∈ Ap.

First we show that w satisfies the doubling condition. It follows from (2.4) that
for every cube Q, (

1
|Q|

∫
Q

|f |
)

w(Q)1/p ≤ 2∥mλ0(fχQ)∥Lp(w).

Take here f = χεQ with ε > 0 small enough. We obtain

w(Q)1/p ≤ 2
εn

∥mλ0(χεQ)∥Lp(w). (2.5)

Now we claim that if εn < λ0
( 1

4 − ε
2
)n, then mλ0(χεQ) ≤ χ 1

2 Q. Indeed, let x ̸∈ 1
2 Q

and let R be an arbitrary cube such that x ∈ R and R ∩ εQ ̸= ∅. Then |R| ≥( 1
4 − ε

2
)n|Q|. From this,

|R ∩ εQ| ≤ εn|Q| < λ0|R|,

which implies

mλ0(χεQ)(x) = sup
R∋x

(χR∩εQ)∗(λ0|R|) = 0, x ̸∈ 1
2Q.

Thus, we obtain from (2.5) that for a suitably chosen ε,

w(Q) ≤
(

2
εn

)p

w(Q/2),

which proves the doubling condition.
Now, combining the Cp condition with (2.4) yields that there exist C, δ > 0 such

that for every cube Q and any measurable subset E ⊂ Q,

w(E) ≤ C

(
|E|
|Q|

)δ

∥MχQ∥p
Lp(w) ≤ 2pC

(
|E|
|Q|

)δ

∥mλ0(χQ)∥p
Lp(w). (2.6)

Applying the same argument as above, we obtain

mλ0(χQ) ≤ χrQ

for r > 1 satisfying
(

r−1
2 )n = 1

λ0
. Therefore, by the doubling property,

∥mλ0(χQ)∥p
Lp(w) ≤ w(rQ) ≤ Cw(Q),

which along with (2.6) proves that w ∈ A∞, and hence the proof is complete. □

Remark 2.5. It can be easily checked that the Ap constant [w]Ap in Theorem 1.2
depends only on the MLp(w)-norm of M and on the constants from the definition
of Cp. Similarly, the Ap constant in Corollary 1.3 depends only on the MLp(w)-
and (MLp(w))′-norms of M .
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698 ANDREI K. LERNER

3. Proof of Theorem 1.4

As we will see, Theorem 1.4 is a particular case of a more general result, Theo-
rem 3.7, proved below. Let us start with some preliminary facts that will be needed
in the proof of this result. The following definition was given in [13].

Definition 3.1. We say that a (sub)linear operator T is non-degenerate if there
exists a constant C > 0 such that for all ℓ > 0 there is an xℓ ∈ Rn such that for all
cubes Q with the side length ℓQ = ℓ, for all non-negative and locally integrable f
and for all x ∈ (Q + xℓ) ∪ (Q − xℓ),

1
|Q|

∫
Q

f ≤ C|T (fχQ)(x)|.

Remark 3.2. Recall that a convolution singular integral operator Tf := f ∗ K
is non-degenerate in the sense of Stein [16, p. 210] if, additionally to the standard
assumptions on K, there exist a constant C > 0 and a unit vector u0 such that

|K(tu0)| ≥ C

|t|n
for all t ∈ R.

For example, this condition holds if T is any one of the Riesz transforms. An
argument given in [16, p. 211] shows that if T is non-degenerate in the sense of
Stein, then it is also non-degenerate in the sense of Definition 3.1.

We say that a BFS X is order-continuous if for every sequence {fj} in X such
that fj ↓ 0 almost everywhere we have ∥fj∥X ↓ 0. The following statement is an
abridged version of [13, Theorem A].

Theorem 3.3 ([13]). Let X be an order-continuous BFS, and let T be a non-
degenerate (in the sense of Definition 3.1) linear operator. If T is bounded on X,
then the maximal operator M is bounded on X and on X ′.

Remark 3.4. It can be easily checked from the proof of Theorem 3.3 that the X-
and X ′-norms of M depend only on the X-norm of T .

Now, our goal is to apply Theorem 3.3 to X := MLp(w). Therefore, it is im-
portant to check whether MLp(w) is order-continuous. The definition of MLp(w)
makes sense if w ∈ Np and w > 0 on a set of positive measure, and so we assume
that these two conditions hold. Then there is a simple characterization of when
MLp(w) is order-continuous.

Lemma 3.5. The space MLp(w) is order-continuous iff w ̸∈ L1(Rn).

The proof is based on the following simple property of the maximal operator
which can be found in [16, p. 222].

Proposition 3.6. Suppose that w ̸∈ L1(Rn) and f ∈ MLp(w). Then, for all
x ∈ Rn,

lim
R→∞

M(fχRn\BR
)(x) = 0,

where BR denotes the ball of radius R centered at the origin.
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Proof of Lemma 3.5. Suppose that MLp(w) is order-continuous. Then, assuming
that w ∈ L1(Rn), we arrive at a contradiction by taking the sequence fj := χ{|x|≥j},
j ∈ N. Indeed, fj ∈ MLp(w) and fj ↓ 0 everywhere. However, Mfj ≡ 1 and
therefore ∥fj∥MLp(w) = ∥w∥1/p

L1 ↚ 0.
Suppose now that w ̸∈ L1(Rn). Take an arbitrary sequence {fj} in MLp(w)

such that fj ↓ 0 almost everywhere. Let ε > 0. By Proposition 3.6 (applied to f1)
and by the dominated convergence theorem, there exists R > 0 such that

∥fj∥MLp(w) ≤ ∥fjχBR
∥MLp(w) + ε, j ∈ N.

Consider the sequence {M(fjχBR
)}. By the weak type (1, 1) of M , this sequence

converges to zero in measure, and hence there exists a subsequence that converges
to zero almost everywhere. Since the sequence itself is monotonic decreasing, it
also converges to zero almost everywhere. It remains to apply the dominated
convergence theorem, and we obtain that there exists N ∈ N such that for all
j > N ,

∥fjχBR
∥MLp(w) < ε,

which, combined with the previous estimate, shows that ∥fj∥MLp(w) ↓ 0. This
completes the proof. □

We are now ready to state the main result of this section.

Theorem 3.7. Let p > 1. Let T be a linear non-degenerate operator in the sense
of Definition 3.1, and assume additionally that T is bounded on Lp. If T is bounded
on MLp(w), then w ∈ Ap.

Remark 3.8. If T is a non-degenerate (in the sense of Stein) singular integral
operator, then, by Remark 3.2, it is non-degenerate in the sense of Definition 3.1.
Moreover, it is bounded on Lp. Hence, Theorem 3.7 contains Theorem 1.4 as a
particular case.

Proof of Theorem 3.7. For ε ∈ (0, ε0), where ε0 is any fixed small number, define
wε := w + ε. Then, using that M and T are bounded on Lp, we obtain that T is
bounded on MLp(wε) with the MLp(wε)-norm independent of ε. Since wε ̸∈ L1,
applying Lemma 3.5 and Theorem 3.3 (along with Remark 3.4), we obtain that
M is bounded on MLp(wε) and on (MLp(wε))′ with the corresponding norms
independent of ε. Therefore, by Corollary 1.3 (along with Remark 2.5), wε ∈ Ap

with the Ap constant [wε]Ap
independent of ε. Hence, by the monotone convergence

theorem, w ∈ Ap. □

We conclude by making a couple of remarks related to Theorem 3.7.

Remark 3.9. For some singular integral operators, Theorem 3.7 can be proved
differently, without introducing wε and the use of Remarks 3.4 and 2.5. For exam-
ple, for the Hilbert transform H, the boundedness of H on MLp(w) implies the
Coifman–Fefferman inequality for H, which in turn implies that w ∈ Cp (this was
shown in [12]). But any Cp weight is not integrable (see, e.g., [2]), and hence it
remains to apply Theorem 3.3 along with Corollary 1.3.
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However, for more general singular integrals such an approach leads to additional
technicalities. For example, the Cp condition was deduced in [15] assuming that
the Coifman–Fefferman inequality holds for all Riesz transforms Rj , j = 1, . . . , n.
On the other hand, in Theorem 3.7, T can be any one of the Riesz transforms.

Remark 3.10. A non-degeneracy assumption on T is used in the proof of The-
orem 3.3 through the following property: if T is non-degenerate in the sense of
Definition 3.1 and weak-X bounded, then

sup
Q

∥χQ∥X∥χQ∥X′

|Q|
< ∞, (3.1)

where weak-X boundedness means that

sup
α>0

α∥χ{|T f |>α}∥X ≤ C∥f∥X .

At this point, observe that the notion of a non-degenerate operator can be
defined in a slightly more general way, which seems more flexible and applicable to
a wider class of operators (even though we do not give concrete examples).

Definition 3.11. We say that T is non-degenerate if there exists a constant C > 0
such that for every cube Q and any non-negative locally integrable f , one can find
a cube Q′ such that

1
|Q|

∫
Q

f ≤ C|T (fχQ)(x)| for all x ∈ Q′ (3.2)

and
1 ≤ C|T (χQ′)(x)| for all x ∈ Q. (3.3)

It is easy to see that if T is non-degenerate in the sense of Definition 3.1, then
it is also non-degenerate in the sense of Definition 3.11.

Next, assuming Definition 3.11 and weak-X boundedness, we easily obtain (3.1).
Indeed, it follows from (3.2) that(

1
|Q|

∫
Q

f

)
∥χQ′∥X ≤ C∥T∥X→Xweak∥fχQ∥X ,

while (3.3) implies
∥χQ∥X ≤ C∥T∥X→Xweak∥χQ′∥X .

Combining both estimates yields(
1

|Q|

∫
Q

f

)
∥χQ∥X ≤ C2∥T∥2

X→Xweak
∥fχQ∥X ,

which is equivalent to (3.1).
Therefore, Theorems 3.3 and 3.7 can be formulated assuming that T is non-

degenerate in the sense of Definition 3.11.
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