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ON A NON-STANDARD CHARACTERIZATION
OF THE A, CONDITION

ANDREI K. LERNER

ABSTRACT. The classical Muckenhoupt Aj, condition is necessary and suffi-
cient for the boundedness of the maximal operator M on LP(w) spaces. In
this paper we obtain another characterization of the A, condition. As a result,
we show that some strong versions of the weighted L?(w) Coifman—Fefferman
and Fefferman—Stein inequalities hold if and only if w € A;,. We also give new
examples of Banach function spaces X such that M is bounded on X but not
bounded on the associate space X'.

1. INTRODUCTION
Let M be the Hardy-Littlewood maximal operator defined by
1
R AL
@32 1Ql Jg

where the supremum is taken over all cubes ) C R™ containing the point z. By a
weight we mean a non-negative locally integrable function on R". A weight w € A,

p>1,if
1 1 )\
[w]a, .:sgp<|Q|/Qw) <|Q|/Qw v ) < 00.

By the classical Muckenhoupt theorem [II], M is bounded on LP(w) iff w € A,.
Denote by N, p > 1, the class of weights satisfying

_w@) L
/Rn @+ [ ™=

Since M f(z) > ﬁ whenever f is not identically zero, we obtain A, C N,,. It
is obvious that this inclusion is strict (for example, any bounded weight belongs to
N,, while there is a variety of bounded weights not belonging to A,).
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Now, denote by W,,, p > 1, the class of weights w € IV}, for which there exists a
constant C' > 0 such that

[ orpyeze [ orprw

Rn
whenever the right-hand side is finite. Then, we trivially have that A, C W,. At
first glance, it seems that this inclusion is also strict. However, this is still not clear
to us. We formulate this question as follows.

Question 1.1. Does there exist a weight w € W, \ 4,7

In this paper we obtain a result related to this question that is of some indepen-
dent interest. To state it, we need a definition of the C), class of weights.
We say that w € Cp, p > 0, if there exist C,J > 0 such that for every cube Q

and any subset £ C Q,
5
/w §C’<|E|> / (Mxqg)Pw.
E QI Jrn

This condition was introduced by Muckenhoupt [12], and it plays an important
role in the study of weighted Coifman—Fefferman and Fefferman—Stein inequalities
(see, e.g., [2 [15] 17]).

Denote A 1=, Ap. It is well known that for any p > 1, 4, C A C Cp,
that is, the class C, is much wider than A,. In particular, a C, weight may
vanish on a set of positive measure while a weight from A, must be positive almost
everywhere (see, e.g., [12] or [2]).

Since A, C W, we have that A, C W, N Cp. Our main result says that in
fact the converse inclusion holds as well and we have the following non-standard

characterization of the A, condition.

Theorem 1.2. For anyp > 1,
A, =W,NC,.

Returning to Question [I.1] observe the following. As we will show below, in
the proof of Theorem @, any weight w in W, satisfies the doubling condition
(which we denote by w € D), namely, there exists a constant C' > 0 such that
sz w<C fQ w for every cube Q). Therefore, if there exists a weight w € W, \ 4,
such a weight must necessarily belong to D\ C,,. But even a construction of weights
in D\ Ay is rather non-trivial; the first example of such a weight was given by
Fefferman and Muckehnoupt [5]. This only says that an attempt to give a positive
answer to Question [I.1]is not a simple task.

In what follows, we consider several applications of Theorem which will
explain our interest in the class W,.

1.1. An application to the space M LP(w). Let X be a Banach function space
(BFS) over R", and let X’ denote the associate space. We refer to a recent survey
by Lorist and Nieraeth [I0] where, in particular, one can find a discussion about
the choice of axioms needed to define the notion of BFS correctly.
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ON A NON-STANDARD CHARACTERIZATION OF THE A, CONDITION 693

Given a BFS X, denote by M X the space equipped with norm

[ fllarx = [[Mfllx-

Observe that when X := LP(w), the space M L?(w) was mentioned in Stein’s book
[16, p. 222]. For a general BFS X, the space M X was considered in a recent
paper [8]. In particular, it was shown there that if X is a BFS, then M X is also a
BFS iff € X. It was also proved in [§] that the Fefferman—Stein inequality
on X,

1+\:c|"

IMfllx < ClLf7|x,
holds iff M is bounded on (M X)'. Here f# is the Fefferman—Stein sharp function

defined by .
- _
(@) = s |Q|/ = Na=1g7 |

Suppose now that X := LP(w). Then W, is the class of weights for which M
is bounded on M LP(w). Next 1t is well known (see [I7]) that the C, condition
is necessary for the Fefferman—Stein inequality on LP(w) (or, equivalently7 for the
boundedness of M on (MLP(w))’) and Cpye, € > 0, is sufficient. Thus, we obtain
the following corollary from Theorem [T.2]

Corollary 1.3. Let p > 1. If the mazimal operator M is bounded on M LP(w) and
n (MLP(w)), then w € A,.

It is well known that for many “standard” BFS X, the maximal operator M
is bounded on X iff M is bounded on X', and there are only few known non-
trivial examples when this is not true (see a recent work by Nieraeth [I3] for a
thorough discussion about this topic). Corollary provides a variety of new
examples. Indeed, let X := (MLP(w)). Take any weight w € Cpi. \ Ap. Then,
as discussed above, M is bounded on X but, by Corollary M is not bounded
on X' = MLP(w). Next, observe that if the answer to Question is positive,
we would obtain yet more examples. Indeed, taking w € W, \ 4,, we would
find that M is bounded on M LP(w) but not bounded on (M LP(w))’. Note that
it was conjectured in [I13] that if X is an r-convex and s-concave BFS, where
l<r<s<oo,then M: X — X iff M : X’ — X'. However, the above examples
do not seem to satisfy the convexity/concavity assumptions, and so they probably
cannot be used to disprove this conjecture.

2. On some variants of the Coifman—Fefferman and Fefferman—Stein
inequalities. Suppose that T is a singular convolution integral which is non-degen-
erate in the sense of Stein [16, p. 210]. Then T is bounded on LP(w) iff w € A,.
Now we have that the same result holds on M LP(w) as well.

Theorem 1.4. Let T be a non-degenerate singular integral operator. Then T is
bounded on MLP(w), p > 1, iff w € A,.

Observe that the sufficiency of w € A, trivially follows from the classical theory.
Indeed, if w € A,, then

IM(Tf)ll ey < ClfllLrw) < CIM £l Lo (w)-
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694 ANDREI K. LERNER

However, the necessity of w € A, is not trivial even for the Hilbert transform.
Here we essentially use a recent result of Nieraeth [I3] saying that if X is an order-
continuous BFS and T is a non-degenerate linear operator bounded on X, then
M is bounded on X and X’ (an earlier version of this result with more restrictive
convexity assumptions on X was obtained by Rutsky [I4]). Thus, basically the
necessity part in Theorem follows by taking X := M LP(w) and applying Corol-
lary There are still some technicalities related to order-continuity of M LP(w),
which will be discussed in Section 3.

Theorem can be viewed as a complement to the Coifman—Fefferman inequal-
ity [3] saying that

1T fllee ) < CIM fllze ()
where T stands for the maximal singular integral operator. A sufficient condition
for this estimate to hold is w € Cpie, € > 0 (see [15]). Now, it is easy to show
(this can be proved exactly as [8 Lemma 3.2]) that for every r € (0,1) and for all
z e R",
M (Tf)(x) < Crpn(T" f(z) + M f(2)),

where M,.f := M(|f|")*/". Therefore, if w € Cp., then

M (TF)llew)y < CrnlMfllLew), 7€ (0,1).

It is natural to wonder what happens when » = 1, and whether the condition
w € Cpy. remains sufficient. Theorem [1.4]shows that this is not the case, and that
the above inequality for » = 1 holds iff w € A,.

As a simple corollary, we obtain that a similar phenomenon occurs with the
Fefferman—Stein inequality [6] saying that

1M fll oy < CNFF Il o) (L.1)
By [17], the Cpy. condition is sufficient for (L.1). Suppose now that we change
f#* in by a smaller operator fé# = ((|f|5)#)1/5 for 6 € (0,1). Then using
that (Tf)?é < Cs., M f for a singular integral operator T (see, e.g., [I]), we obtain

that T is bounded on M LP(w), and hence w € A,. Thus, we have the following
corollary.

Corollary 1.5. Suppose that p > 1 and 6 € (0,1). Then the estimate

IM fll o) < CIFE o) (1.2)
holds iff w € Ap.

Observe that there is a simpler way to prove Corollary without the use of
Theorem H Indeed, implies and hence, by [I7], w € C,. Next, using
that f(;# < 2Mjsf and that, by the Coifman—Rochberg theorem [4], Ms(M f) <
CM f, we obtain from that M is bounded on M L?(w), and it remains to

apply Theorem [I.2]
The paper is organized as follows. In Section 2 we prove Theorem [T.2] and in

Section 3 we prove Theorem [I.4]

Rev. Un. Mat. Argentina, Vol. 68, No. 2 (2025)



ON A NON-STANDARD CHARACTERIZATION OF THE A, CONDITION 695

2. PROOF OF THEOREM [.2]

An important role in our proof will be played by the local maximal operator
defined by

maf(x) :=sup(fxq)"(AQ]), Ae(0,1),
Q3z

where the supremum is taken over all cubes Q C R™ containing the point x, and
(fxQ)*(A\|Q|) denotes the non-increasing rearrangement defined by

(Fx@)*(A@Q) :==inf{a > 0: {z € Q: [f(2)| > a}| < AQ]}.

We mention several simple propositions which will be used below.

Proposition 2.1. For anyr > 1 and A € (0,1), and for all x € R™,
Mf(z) < M, f(x) +m f().

Proof. By Chebyshev’s inequality, for 7 € (0,1) and for every cube @,

e < (i L) 21

Therefore, for z € Q,

1 1 * = ' (r T
Q|/Q'f':cz| Craroa= [ uxereiand

(/oA ) (i f, 'T>1/r + /:(fXQ)*(TQI)dT

LN M, [ (@) + maf(e),

and the result follows. O

QI

IN

<

Proposition 2.2. For any X\ € (0,1) and for all x € R",
ma(M[f)(z) < CxnM f(2).
Proof. By (2.1)), for every § > 0,

rf (@) < 537 Ms f(2). 22)
Next, by the Coifman—Rochberg theorem [4], Ms(M f) < Cs M [ for § € (0,1).
Combining both estimates proves the result. O

The following result is the key ingredient of the proof, and it can be formulated
for a general BFS X.

Theorem 2.3. Let X be a BFS such that
are equivalent:

(i) M is bounded on M X, that is, there exists a constant C > 0 such that for
every f € M X,

1+\x|" € X. The following statements

[MM fllx < ClMfllx;
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696 ANDREI K. LERNER

(ii) there exists Ao € (0,1) such that for every f € X,
M fllx < 2[ma, fllx- (2.3)

Proof. Let us prove the implication (i) = (ii). We will use the well-known fact
(see, e.g., [9]) that if M is bounded on a BFS X, then M, is bounded on X for
some r > 1. Therefore, the boundedness of M on M X implies that there exist
r > 1 and C' > 0 such that

M fllx < ClIMflx.
Combining this with Proposition [2.1] yields

r—1

T AIMFlx A [lmafllx

r
M fllx <C——=A
r—1

Therefore, taking A such that C’Til)\tl
that f € MX.
Take now an arbitrary f € X. For N > 0, set

= 1 proves (2.3) under the assumption

fN = min(|f|7N)x{|m‘§N}.
Then fy € MX. Hence, by (2.3) for f € M X we obtain

IM(f3)llx < 2flmag (fn)llx < 2[ma fllx-

Since fny 1 |f|, we have M (fn) T M f (the proof of this simple fact can be found
in, e.g., [8, Section 2]). Therefore, letting N — oo completes the proof of for
any f € X by the Fatou property of X.

Now, the implication (ii) = (i) follows immediately by setting M f instead of f
in and applying Proposition This completes the proof. O

Suppose that X := LP(w). Theorem[2.3|shows that if M is bounded on M LP(w),
then M is bounded on L?(w) (and hence w € A,) iff my does. But the boundedness
of my on LP(w) follows easily assuming just w € A. Indeed, we have the following
proposition.

Proposition 2.4. Let w € Ay,. Then the local maximal operator my is bounded
on LP(w) for every p >0 and A € (0,1).

Proof. There exists r > 1 such that w € A,. Define § := 2. Then applying (2.2)
and using that M is bounded on L"(w), we obtain

1 r
I fleswy < 515l MUS 0y < Clflloogun,
and the proof is complete. O

Thus our strategy in the proof of Theorem is to deduce that w € A,,. We
will use the following equivalent definition of Ay, (see, e.g., [, p. 527]): w € A if
there exist C,d > 0 such that for every cube @ and an arbitrary subset £ C @,

forsel@) fe
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ON A NON-STANDARD CHARACTERIZATION OF THE A, CONDITION 697

Proof of Theorem [I.2] By Theorem there exists A\g € (0, 1) such that

1M fllLewy < 2llmag fll 2 (w)- (2.4)

Our goal now is to show that w € A,.. Then combined with Proposition
would imply that M is bounded on L”(w) and hence w € A,.

First we show that w satisfies the doubling condition. It follows from that
for every cube @,

<Q|/ i/ ') (@7 < 2lmag (x@) o

Take here f = x.g with € > 0 small enough. We obtain

2
w(@)'? < o llmae (el () (2.5)

Now we claim that if e < )\o(i — %)n, then my, (xeq) < X1qQ- Indeed, let = ¢ %Q
and let R be an arbitrary cube such that + € R and RNeQ # (. Then |R| >

(- 7) |Q]. From this,
[RNeQ| <e"|Q < Aol R,

which implies
. 1
on(XEQ)@j) = Sup(XRﬂEQ) ()‘0|R|) =0, z¢ 5@
R>x

Thus, we obtain from (2.5) that for a suitably chosen e,

w@ < () v

which proves the doubling condition.
Now, combining the C), condition with (2.4) yields that there exist C, ¢ > 0 such
that for every cube ) and any measurable subset E C @,

E )
( ) = O(:Q:) HMXQHLP(w) = QPC(:Q> HmAO(XQ)”IL),p(w)' (2.6)

Applying the same argument as above, we obtain

mx, (XQ) < Xr@

for r > 1 satisfying (7'_1 = i. Therefore, by the doubling property,
||on X Tp () < w(r@Q) < Cw(Q),

which along with ) proves that w € A, and hence the proof is complete. [

Remark 2.5. It can be easily checked that the A, constant [w]4, in Theorem
depends only on the M LP(w)-norm of M and on the constants from the definition
of Cp. Similarly, the A, constant in Corollary depends only on the M LP(w)-
and (M L?(w))'-norms of M.
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698 ANDREI K. LERNER

3. PROOF OF THEOREM [L.4]

As we will see, Theorem is a particular case of a more general result, Theo-
rem [3.7] proved below. Let us start with some preliminary facts that will be needed
in the proof of this result. The following definition was given in [I3].

Definition 3.1. We say that a (sub)linear operator T is non-degenerate if there
exists a constant C' > 0 such that for all £ > 0 there is an x, € R™ such that for all
cubes @) with the side length g = ¢, for all non-negative and locally integrable f
and for all z € (Q + z¢) U (Q — x¢),

1
ol /Q f < CIT(Fxo)@).

Remark 3.2. Recall that a convolution singular integral operator T'f := f « K
is non-degenerate in the sense of Stein [I6] p. 210] if, additionally to the standard
assumptions on K, there exist a constant C' > 0 and a unit vector ug such that

C
| K (tug)| > Q for all £ € R.
For example, this condition holds if T is any one of the Riesz transforms. An
argument given in [I6, p. 211] shows that if T' is non-degenerate in the sense of

Stein, then it is also non-degenerate in the sense of Definition [3.1}

We say that a BFS X is order-continuous if for every sequence {f;} in X such
that f; | 0 almost everywhere we have || f;||x | 0. The following statement is an
abridged version of [I3] Theorem A].

Theorem 3.3 ([I3]). Let X be an order-continuous BFS, and let T be a non-
degenerate (in the sense of Definition linear operator. If T is bounded on X,
then the mazximal operator M is bounded on X and on X'.

Remark 3.4. It can be easily checked from the proof of Theorem [3.3] that the X-
and X’'-norms of M depend only on the X-norm of T'.

Now, our goal is to apply Theorem to X := MLP(w). Therefore, it is im-
portant to check whether M LP(w) is order-continuous. The definition of M L?(w)
makes sense if w € N, and w > 0 on a set of positive measure, and so we assume
that these two conditions hold. Then there is a simple characterization of when
MLP(w) is order-continuous.

Lemma 3.5. The space M LP(w) is order-continuous iff w ¢ L'(R").

The proof is based on the following simple property of the maximal operator
which can be found in [I6], p. 222].

Proposition 3.6. Suppose that w ¢ L*(R™) and f € MLP(w). Then, for all
r e R"”,
RIEI;OM(.}CX]R"\BR)(‘I) = 07

where Br denotes the ball of radius R centered at the origin.
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Proof of Lemma [3.5] Suppose that M LP(w) is order-continuous. Then, assuming
that w € L'(R™), we arrive at a contradiction by taking the sequence Ii = X{z|>j}
j € N. Indeed, f; € MLP(w) and f; | 0 everywhere. However, Mf; = 1 and

therefore ||f;larzo(u) = ] +0.

Suppose now that w ¢ L'(R™). Take an arbitrary sequence {f;} in MLP(w)
such that f; | 0 almost everywhere. Let € > 0. By Proposition (applied to f1)
and by the dominated convergence theorem, there exists R > 0 such that

I fillarrewy < WfixBrllvorw) +€, J€N.

Consider the sequence {M(f;xB,)}. By the weak type (1,1) of M, this sequence
converges to zero in measure, and hence there exists a subsequence that converges
to zero almost everywhere. Since the sequence itself is monotonic decreasing, it
also converges to zero almost everywhere. It remains to apply the dominated
convergence theorem, and we obtain that there exists NV € N such that for all
j>N,

1 fixBrllrmLrw) <e,
which, combined with the previous estimate, shows that || f;l[arre(w) 4 0. This
completes the proof. O

We are now ready to state the main result of this section.

Theorem 3.7. Let p > 1. Let T be a linear non-degenerate operator in the sense
of Definition and assume additionally that T is bounded on LP. If T is bounded
on MLP(w), then w € A,.

Remark 3.8. If T is a non-degenerate (in the sense of Stein) singular integral
operator, then, by Remark it is non-degenerate in the sense of Definition |3.1
Moreover, it is bounded on LP. Hence, Theorem [3.7] contains Theorem [.4] as a
particular case.

Proof of Theorem [3.7] For £ € (0,e0), where ¢¢ is any fixed small number, define
we := w + €. Then, using that M and T are bounded on LP, we obtain that T is
bounded on M LP(w.) with the M LP(w,)-norm independent of e. Since w. ¢ L,
applying Lemma and Theorem (along with Remark , we obtain that
M is bounded on MLP(w.) and on (MLP(w.))" with the corresponding norms
independent of €. Therefore, by Corollary (along with Remark , we € A,
with the A, constant [wc]4, independent of . Hence, by the monotone convergence
theorem, w € A,,. O

We conclude by making a couple of remarks related to Theorem

Remark 3.9. For some singular integral operators, Theorem can be proved
differently, without introducing w. and the use of Remarks and For exam-
ple, for the Hilbert transform H, the boundedness of H on M LP(w) implies the
Coifman-Fefferman inequality for H, which in turn implies that w € C), (this was
shown in [12]). But any C, weight is not integrable (see, e.g., [2]), and hence it
remains to apply Theorem [3.3] along with Corollary [T.3}

Rev. Un. Mat. Argentina, Vol. 68, No. 2 (2025)



700 ANDREI K. LERNER

However, for more general singular integrals such an approach leads to additional
technicalities. For example, the C, condition was deduced in [I5] assuming that
the Coifman—Fefferman inequality holds for all Riesz transforms R;, j = 1,...,n.
On the other hand, in Theorem T can be any one of the Riesz transforms.

Remark 3.10. A non-degeneracy assumption on 7' is used in the proof of The-
orem through the following property: if T is non-degenerate in the sense of
Definition [3.1] and weak-X bounded, then

IIxelxlixellx (3.1)

sup < 00,

Q Q|

where weak-X boundedness means that
sup o[ xqrf>atllx < C|fllx-
a>0

At this point, observe that the notion of a non-degenerate operator can be
defined in a slightly more general way, which seems more flexible and applicable to
a wider class of operators (even though we do not give concrete examples).

Definition 3.11. We say that T' is non-degenerate if there exists a constant C' > 0
such that for every cube @@ and any non-negative locally integrable f, one can find
a cube Q' such that

ﬁ /Q [ <C|IT(fxq)(z)] forallze Q' (3.2)
and
1 <C|T(xq)(z)| forallz e Q. (3.3)

It is easy to see that if T' is non-degenerate in the sense of Definition [3.1] then
it is also non-degenerate in the sense of Definition [3.11]

Next, assuming Definition and weak-X boundedness, we easily obtain .
Indeed, it follows from that

1
( / f) Ixorllx < CIT]xoxem I Fx0 5
@l /s

while (3.3) implies
IXQllx < ClIT|x - Xyeme X | x-

Combining both estimates yields

1
(M/Qf)”XQHX <C?TIA S xou 1 xallxs

which is equivalent to (3.1]).
Therefore, Theorems [3.3] and [3.7] can be formulated assuming that 7' is non-
degenerate in the sense of Definition [3.11]
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