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ON L, KY FAN DETERMINANT INEQUALITIES

BINGXIU LYU AND DANNI XU

ABSTRACT. We establish an extension of Ky Fan’s determinant inequality
when the usual matrix addition is replaced by the power mean of positive
definite matrices. We further explore variants of this newly derived L, Ky
Fan inequality, extending a determinant difference inequality formulated by
Yuan and Leng [J. Aust. Math. Soc. 83 no. 1 (2007)].

1. INTRODUCTION

In the context of positive definite n x n matrices A and B, the foundational
determinant inequality can be expressed as follows:

|A+ B| = |A] +|B].

An enhanced version of this determinant inequality is given by the Minkowski
determinant inequality [8 p. 510]

|A+ B|Y/™ > |A]Y"™ 4+ |B|V™ (1.1)

Over the course of several decades, the Minkowski determinant inequality has
undergone substantial generalization within scholarly literature, as documented in
works such as [II, B, 4, [5, [8, 10, @, 11} 15, I3 14, 16]. A notable advancement
of inequality is the Ky Fan determinant inequality (see [5] or [I3, p. 687]).
It describes how the determinant of a block matrix is bounded by products of
determinants involving its principal submatrices and Schur complements. This in-
equality is a fundamental result in the study of matrix analysis, finding applications
across numerous disciplines, including optimization theory, statistics, and mathe-
matical physics. By revealing connections between determinants and the structure
of matrices through Schur complements, Ky Fan’s determinant inequality plays a
pivotal role in understanding the interplay between different parts of a matrix and
their collective impact on its determinant value. Specifically, Ky Fan’s determinant

inequality states as
1 1

1
A B n—k A n—Fk B n—k
(+) Z(I) +(||> 7 (1.2)
|(A+ B)xl | Ak | Bi|
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where M}, denotes the k-th leading principal submatrix of a matrix M.

In 2007, Yuan and Leng [I5] proved an elegant extension of Ky Fan’s determinant
inequality: For positive definite n x n matrices A and B, and non-negative real
numbers a and b such that A > al,, and B > bl,, the following inequality holds:

A+ B = _ (A =% /B wE
_— I, _ > — —lal,, _ — —|bl,,_ .
<<A+B>k| ot )= { g ~latomsl )+ {15, ~10T]

1.3

Positive definite matrices occupy a central position among matrix operations,
distinguished by their unique properties and crucial role in diverse fields. Their
significance extends beyond mere algebraic manipulation, as evidenced by fascinat-
ing behavior when raised to powers and subsequently combined. For n X n positive
definite matrices A and B, this behavior leads to the emergence of a captivating
operator, denoted by +, for p € R. When p > 1, this operator defines the power
mean, A +, B, of A and B as follows:

A+, B = (AP 4 BP)Y/P,

Building upon the intriguing behavior of positive definite matrices under the
power mean operator (as explored in works including [7] and [I6, Section 1.2]),
this paper delves into their combined influence through the lens of the power mean
operator. This operator bridges the gap between matrix algebra and the inherent
positive definiteness of these matrices, offering valuable insights into their joint
characteristics. Motivated by these observations, we investigate the existence of a
Ky Fan determinant inequality for the power mean of positive definite matrices.

We aim to establish the L, versions of inequalities and specifically
for p > 1. Our efforts focus on achieving the following:

Theorem 1.1. Let A and B be two symmetric, positive definite matrices of order n
and let Ay, and By, be the k-th leading principal submatrices of A and B, respectively.

If p > 1, then
=IE e =
(|A+pB) ’“2<|A) ’°+(|B|> ’
|(A+p B)l | Ay | Bi|

with equality if and only if A = cB for some ¢ > 0.

Theorem 1.2. Let A and B denote two symmetric, positive definite matrices of
order n, with A and By representing the k-th leading principal submatrices of A
and B respectively. Given 1 < p < n —k and non-negative real numbers a and S
such that A > al,, and B > I, the following inequality holds:

A+, B 1 (1A o
<|(|A+pB)|k —|(aP 4 BP)¥ n—kl) > <|Ak| - |0Jn—k|>
p

|B| >pk
+ | —= — |8 .
Equality holds in (1.4) if and only if either p=mn—k or a™'A = p~1B.

(1.4)
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Theorem 1.3. Let A and B be two symmetric, positive definite matrices of order n.
Let Ay and By denote the k-th leading principal submatrices of A and B, respec-
tively. If p > n —k and a and B are positive real numbers such that 0 < A < oI,
and 0 < B < @1, then

1 |A+, B ) ( |A)n'ﬁv
ol + BV, | — — P < ||alp—g| — —

p
|B| \ " F
+ <|Bln—k| T 1B .

(1.5)

Equality holds in (1.5)) if and only if a=*A = 71 B.

As not all positive definite matrices inherently secure the positive definiteness of
their Schur complements, the imposition of symmetry becomes pivotal in assuring
this favorable attribute. Therefore, we enforce symmetry on the matrices referenced
in the aforementioned theorems.

2. PRELIMINARIES AND AUXILIARY RESULTS

Let M, (R) denote the set of real n X n matrices, and let I,, denote the n x n
identity matrix. Given an A taken from M, (R), the notation A > 0 (A > 0) is
used to indicate that matrix A is positive definite (positive semi-definite). Thus,
the relation A > B (A > B) is synonymous with A — B > 0 (A — B > 0). The
operation A7 denotes the transpose of matrix A. An n X n matrix is said to be
symmetric if AT = A.

Denote by H™ the subset of symmetric, positive definite matrices of M,,(R), and
by A a convex subset of H". A function ¢ : A — H" is said to be matrix concave
if

O(AA + AB) > Ap(A) + A\p(B)

for A € [0,1], where A = 1 — \.

Suppose that A, B are symmetric, positive definite n x n matrices and «, 5 > 0.
For p > 0, the p-sum, a- A+, 8- B, of A and B is defined as a positive definite
matrix:

a-A+, B B=[aA? + 3BP"
Especially, for a > 0,
a-A=al/PA.
Note that if p = 1, then a- A+, 3- B reduces to the usual matrix addition A+ 3B.
Lemma 2.1. Suppose p > 1, A € [0,1], and A, B € H"™. Then

A-A+, - B> A+ )\B. (2.1)
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Proof. 1t is well known that M* is matrix concave for M € H" and 0 < s < 1; see,
e.g., [2]. Denoting A = AP and B = BP, we have
A-A4pA-B= (A +AB)
> \AYP 4 \B/P
=AA+ )\B. O

Let Ac H™. If A= [f‘; ﬁ;z }, where Aqq is of order k and invertible, then the
Schur complement, 8(A), of Aq; in A is defined as

S(A) = A22 — A21A1_11A12.

The following facts about the Schur complement can be found in many refer-
ences; see, e.g., [8 6] 9] [13] [14].

Lemma 2.2. Let A = [ﬁ“ ‘212} and B = [g“ g”] be symmetric, positive definite
21 22 21 22
matrices such that A1 and Bi1 are k X k invertible matrices. Then
(1) [A] = [An][s(A);
(ii) if A > B, then 8(A) > 8(B);
(iii) we have

8(A+ B) > 8(A) + 8(B), (2.2)
with equality if and only if AglAﬁl = Bngﬂl.

It is useful to present inequality (2.2)) as the concavity of the Schur complement
8(-) (see, for example, [13, E.7.g]); that is to say, for A, B € H"™ and X € [0,1],

S(AA 4+ AB) > \8(A) + \8(B). (2.3)

Lemma 2.3. Let @ = (ay,...,an) and b= (b1,...,bm) represent two m-tuples of
positive real numbers. Suppose that q is a real number such that al > E;nzz a? and
b > 370,08, If g > 1, then

m 1/q m 1/q m 1/q
<a1+b1 = (a; +1b)) ) > (a‘{Za?) + (biZb;!) . (24)
Jj=2 j=2 j=2

If 0 < q < 1, then inequality (2.4)) is reversed. Moreover, equalities hold in these
inequalities if and only if either ¢ = 1 or @ = vb, where v is a positive constant.

A proof of Lemma [2.3|can be found in [I2]. The inequality (2.4)), which was first
proved by Bellman [3] p. 38], plays a crucial role in establishing (|1.3)

Building upon the multiple triangle inequality on R™, a multiple version of
Bellman’s inequality (2.4) exists, extending its applicability to multiple sets of
vectors (see [10, Proposition 2.6] for details).
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Lemma 2.4. Fori=1,2,...,m, let d; = (a;1, a2, ...,a;) denote l-tuples of non-
negative real numbers. Suppose that q is a real number such that al; > Zézz a?j
foreachi=1,2,...,m. If g > 1, then

((i aﬂ>q - ]22 <Z a”) >1/" > é(“éﬂ - §a3j> Uq. (2.5)

Equality holds in (2.5)) if and only if either ¢ = 1 or the sets {@;}™., are propor-
tional.

The following result, an equivalent formulation of the multiple Minkowski in-
equality, is highly beneficial for our analysis.

Lemma 2.5. Let a; and b; be non-negative real numbers such that a; > b; for all
1=1,2,....m. If 0 < q <1, then

Equality holds in (2.6) if and only if a; = vb; for somev > 0 and alli =1,2,...,m.

Proof. Note that for non-negative x;,y; withi =1,2,...,m and r > 1, the multiple
Minkowski inequality can be expressed as

m 1/r m 1/r m 1/r
[Z(%-Fyiy < <Z$Uf> + <Zy:> ) (2.7)

i=1
with equality if and only if the vectors (z1,zo,...,Zy) and (y1,Y2,...,Ym) are
proportional.
Setting r = 1/¢ and z; = b!, y; = a! — b in (2.7), we obtain

o) < (£) - o]

which yields the desired inequality. By the equality case of the multiple Minkowski
inequality (2.7)), equality holds in (2.6)) if and only if b} = u(a —b7) for some p > 0,
which implies a; = vb; for some v >0 and all t =1,2,...,m. O

3. THE L, Ky FAN DETERMINANT INEQUALITY AND ITS VARIANTS

Lemma 3.1. Suppose p > 1 and A € [0,1]. If M, N € H" are symmetric, positive
definite matrices such that |S(M)| = |8(N)| = 1, then

IS(A- M+, \-N)| > 1. (3.1)
For X € (0,1), equality holds if and only if M = N.
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Proof. Recalling that for any A € H™, the Schur complement S(A) of A pos-
sesses positive definiteness. Consider M, N € H". Employing (2.1)), (2.3)), and the
Minkowski determinant inequality (1.1)) with n substituted by n — k, we obtain

IS\ M 4, X~ N)| > |S(AM + AN)|
> [AS(M) + AS(N)]
> (AS(M)|7F + NS(N)| ==
=1.

To establish the equality case of (3.1)), we begin by setting M = N. This leads
to

)nfk

IS(A- M+, \- M)|

|S((AMP + AMP)3)|
= |8(M)]
1.

Next, we assume that [S(A- M +, A-N)| = 1. From (2.1)), we infer that this
implies [AS(M) + AS(N)| = 1. Invoking the equality case of inequality (1.1)), we
deduce that §(M) = ¢8(N) for some ¢ > 0. However, since |S(M)| = [S(N)], it

follows that ¢ = 1 and thus M = N. This establishes that |[S(A- M 4+, A- N)| =1
implies M = N, completing the proof. O

Theorem 3.2. Suppose p > 1. If A, B € H" are two symmetric, positive definite

matrices, then
= = =
<|A+pBI> Z(|A|> +<|B|) ,
[(A+p Bl | A | By |

with equality if and only if A = cB for some ¢ > 0.
Proof. In view of Lemma it suffices to show that

I8(A +p B)|7F > [S(A)|7F + |8(B)|=*. (3.2)
Setting
M=e—— A= — 4,
IS(A)[7=F IS(A)[7=F
Ne—— 1 g1 B
IS(B)|"=F IS(B)["=F
N

in Lemma we have
[S(A- (I8(A)|=7 - 4) 4, A~ (8(B)| =7 - B))| > 1.
Applying the fact that c¢- A = c¢'/PA (¢ > 0) twice, we obtain
S(nA +p uB)| > 1,
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where 1 = (|$(A )| TF + |8(B)|7F ) /e . Equivalently,
S (A7 + BY)H)| > 1.
Since the Schur complement is homogeneous of degree 1, we arrive at
[u8(A +, B)| > 1,
which is equivalent to
P _p_\ "ok

[8(A+, B)| = (I8(A)[7F +[8(B)[=F) 7.

That confirms (3.2). The equality case follows immediately from that of (3.1)).

We denote the L, combination of A;,...,A4,, € H™ as #i*; A;, representing
Ai+p Az +p - -+p A By employing an induction argument, we can establish the
following L,, Ky Fan determinant inequality for multiple positive definite matrices.

Theorem 3.3. Suppose p > 1. Let Ay,..., A, € H™ be positive definite and
let (A;)g denote the k-th leading principal submatriz of A;, where i =1,2,...,m

Then ) p
P e
(|(ﬁzm_'1 Al = ; [(Ai)x| ; (3.3)

with equality if and only if Aq,..., A, are multiples of each other.

Proof. We prove the inequality using mathematical induction.

Based on Theorem inequality is established for m = 2.

Now, assuming that inequality holds for m = r — 1 with r > 3, we proceed
to the case where m = r as follows:

( i Al ):( #70 Ai+y Al )
[N (B Aty A
=) Al ) ( A, | )
>(|<nz ) T

_z( = ) ,

where the last inequality follows from the induction hypothesis. The equality case
is established based on Theorem [3.2] and the induction argument. O

Theorem 3.4. For i = 1,2,...,m, let A; € H™ be symmetric, positive definite
matrices of order n, with (A;)r representing the k-th leading principal submatrices
of A;. Given 1 < p < n—k and non-negative real numbers c; such that A; > «o;1,,

we have

421 Al (’" p)”” S ( Al )

Tam AN a; I > — | I, — . (34
<|<m_1Al->k| 2 ¢ 2 g ~lounesl ) G4)

Equality holds in (3.4) if and only if either p = n — k or a;lAi = a;lAj for
1<i,j <m withi#j.
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Proof. Since A; > a;1,, it follows from Lemma [2.2] that

A,
A >al™F foralli=1,2,...,m
|(Ai)|
Setting ¢ = =24, = I(sz)l K and a;2 = of in Lemma we obtain

<§;<|<ﬁ3|k|>npk> -

(Z)
< (L | () o

P
> n—k
where the last inequality follows from ((3.3)).

Furthermore, by the equality case of Lemma [2.4] we see that when 1 < p <
n — k, equality holds in if and only if ‘(‘A 1)‘ | is proportional to | I, —| for all
1=1,2,...,m. This fact comblned with the equality case of Theorem [3.3] implies
that A; = uozzf for some g > 0 and all ¢ = 1,2,...,m. Consequently, equality
holds in (3.4)) if and only if ai_lAlv = ozj_lAj for all i,j = 1,2,...,m such that
i # j. This completes the proof. O

M=
M
==
EL

E

=

=
N———
1

IA

It is evident that when m = 2, Theorem reduces to Theorem presented
in the Introduction. Moreover, when «; = 0 for all i = 1,2, ..., m, it retrieves the
multiple L, Ky Fan inequality (Theorem [3.3]) for 1 <p <n —k.

Theorem 3.5. Fori = 1,2,...,m, let A; € H" be symmetric, positive definite
matrices of order n, with (A4;)r representing the k-th leading principal submatrices

of A;. Given p > n — k and positive real numbers a; such that 0 < A; < o1, we
have

i=1 —

m 1/p = m _p_
| fimq Al ( |4 )"
Y. D R i L. = e B < il — =) (35
<Z ) 4 T A 2 sl =gy ) - @9

Equality holds in (3.5) if and only if a;lAi = a;lAj for1 <4, <m withi#j.

Proof. Since 0 < A; < oy1,, it follows from Lemma that

zIn ﬁ Al ﬁ .
af<(|aa1)||) >< |Ail ) >0 foralli=1,2,...,m
iln)k

| (A
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.
Setting a; = of, b; = (\(‘f‘i)‘k\) n_k, and ¢ = ”Tjk in Lemma we obtain

m

n—k » n—k

A ) o) (Y ( A )M ’
oa;ly_p| — ——— > af — —_—
Z(' LW 2 2\ taon

1=

1 i=1 i=1

Y

1 —F
- Y ™A
E O‘f Infkr - |€71171 ‘ )
i—1 |(#izy Ai)r]

where the last inequality follows from Theorem [3.3]

for

The equality case can be established using a similar argument to the one used
Theorem [3.4 O

It is easily seen that Theorem from the Introduction is a special case (m = 2)

of Theorem
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