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ON Lp KY FAN DETERMINANT INEQUALITIES

BINGXIU LYU AND DANNI XU

Abstract. We establish an extension of Ky Fan’s determinant inequality
when the usual matrix addition is replaced by the power mean of positive
definite matrices. We further explore variants of this newly derived Lp Ky
Fan inequality, extending a determinant difference inequality formulated by
Yuan and Leng [J. Aust. Math. Soc. 83 no. 1 (2007)].

1. Introduction

In the context of positive definite n × n matrices A and B, the foundational
determinant inequality can be expressed as follows:

|A + B| ≥ |A| + |B|.
An enhanced version of this determinant inequality is given by the Minkowski
determinant inequality [8, p. 510]

|A + B|1/n ≥ |A|1/n + |B|1/n. (1.1)
Over the course of several decades, the Minkowski determinant inequality has

undergone substantial generalization within scholarly literature, as documented in
works such as [1, 3, 4, 5, 8, 10, 9, 11, 15, 13, 14, 16]. A notable advancement
of inequality (1.1) is the Ky Fan determinant inequality (see [5] or [13, p. 687]).
It describes how the determinant of a block matrix is bounded by products of
determinants involving its principal submatrices and Schur complements. This in-
equality is a fundamental result in the study of matrix analysis, finding applications
across numerous disciplines, including optimization theory, statistics, and mathe-
matical physics. By revealing connections between determinants and the structure
of matrices through Schur complements, Ky Fan’s determinant inequality plays a
pivotal role in understanding the interplay between different parts of a matrix and
their collective impact on its determinant value. Specifically, Ky Fan’s determinant
inequality states as(

|A + B|
|(A + B)k|

) 1
n−k

≥
(

|A|
|Ak|

) 1
n−k

+
(

|B|
|Bk|

) 1
n−k

, (1.2)
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736 BINGXIU LYU AND DANNI XU

where Mk denotes the k-th leading principal submatrix of a matrix M .
In 2007, Yuan and Leng [15] proved an elegant extension of Ky Fan’s determinant

inequality: For positive definite n × n matrices A and B, and non-negative real
numbers a and b such that A ≥ aIn and B ≥ bIn, the following inequality holds:(

|A + B|
|(A + B)k|

− |(a + b)In−k|
) 1

n−k

≥
(

|A|
|Ak|

− |aIn−k|
) 1

n−k

+
(

|B|
|Bk|

− |bIn−k|
) 1

n−k

.

(1.3)
Positive definite matrices occupy a central position among matrix operations,

distinguished by their unique properties and crucial role in diverse fields. Their
significance extends beyond mere algebraic manipulation, as evidenced by fascinat-
ing behavior when raised to powers and subsequently combined. For n×n positive
definite matrices A and B, this behavior leads to the emergence of a captivating
operator, denoted by +p for p ∈ R. When p > 1, this operator defines the power
mean, A +p B, of A and B as follows:

A +p B = (Ap + Bp)1/p.

Building upon the intriguing behavior of positive definite matrices under the
power mean operator (as explored in works including [7] and [16, Section 1.2]),
this paper delves into their combined influence through the lens of the power mean
operator. This operator bridges the gap between matrix algebra and the inherent
positive definiteness of these matrices, offering valuable insights into their joint
characteristics. Motivated by these observations, we investigate the existence of a
Ky Fan determinant inequality for the power mean of positive definite matrices.

We aim to establish the Lp versions of inequalities (1.2) and (1.3) specifically
for p > 1. Our efforts focus on achieving the following:

Theorem 1.1. Let A and B be two symmetric, positive definite matrices of order n
and let Ak and Bk be the k-th leading principal submatrices of A and B, respectively.
If p > 1, then (

|A +p B|
|(A +p B)k|

) p
n−k

≥
(

|A|
|Ak|

) p
n−k

+
(

|B|
|Bk|

) p
n−k

,

with equality if and only if A = cB for some c > 0.

Theorem 1.2. Let A and B denote two symmetric, positive definite matrices of
order n, with Ak and Bk representing the k-th leading principal submatrices of A
and B respectively. Given 1 < p ≤ n − k and non-negative real numbers α and β
such that A > αIn and B > βIn, the following inequality holds:(

|A +p B|
|(A +p B)k|

− |(αp + βp)
1
p In−k|

) p
n−k

≥
(

|A|
|Ak|

− |αIn−k|
) p

n−k

+
(

|B|
|Bk|

− |βIn−k|
) p

n−k

.

(1.4)

Equality holds in (1.4) if and only if either p = n − k or α−1A = β−1B.
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Theorem 1.3. Let A and B be two symmetric, positive definite matrices of order n.
Let Ak and Bk denote the k-th leading principal submatrices of A and B, respec-
tively. If p > n − k and α and β are positive real numbers such that 0 < A < αIn

and 0 < B < βIn, then(
|(αp + βp)

1
p In−k| − |A +p B|

|(A +p B)k|

) p
n−k

≤
(

|αIn−k| − |A|
|Ak|

) p
n−k

+
(

|βIn−k| − |B|
|Bk|

) p
n−k

.

(1.5)

Equality holds in (1.5) if and only if α−1A = β−1B.

As not all positive definite matrices inherently secure the positive definiteness of
their Schur complements, the imposition of symmetry becomes pivotal in assuring
this favorable attribute. Therefore, we enforce symmetry on the matrices referenced
in the aforementioned theorems.

2. Preliminaries and auxiliary results

Let Mn(R) denote the set of real n × n matrices, and let In denote the n × n
identity matrix. Given an A taken from Mn(R), the notation A > 0 (A ≥ 0) is
used to indicate that matrix A is positive definite (positive semi-definite). Thus,
the relation A > B (A ≥ B) is synonymous with A − B > 0 (A − B ≥ 0). The
operation AT denotes the transpose of matrix A. An n × n matrix is said to be
symmetric if AT = A.

Denote by Hn the subset of symmetric, positive definite matrices of Mn(R), and
by A a convex subset of Hn. A function ϕ : A → Hn is said to be matrix concave
if

ϕ(λA + λ̄B) ≥ λϕ(A) + λ̄ϕ(B)

for λ ∈ [0, 1], where λ̄ = 1 − λ.
Suppose that A, B are symmetric, positive definite n × n matrices and α, β ≥ 0.

For p > 0, the p-sum, α · A +p β · B, of A and B is defined as a positive definite
matrix:

α · A +p β · B = [αAp + βBp]1/p
.

Especially, for α > 0,

α · A = α1/pA.

Note that if p = 1, then α ·A+p β ·B reduces to the usual matrix addition αA+βB.

Lemma 2.1. Suppose p > 1, λ ∈ [0, 1], and A, B ∈ Hn. Then

λ · A +p λ̄ · B ≥ λA + λ̄B. (2.1)
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Proof. It is well known that Ms is matrix concave for M ∈ Hn and 0 < s < 1; see,
e.g., [2]. Denoting Ā = Ap and B̄ = Bp, we have

λ · A +p λ̄ · B =
(
λĀ + λ̄B̄

)1/p

≥ λĀ1/p + λ̄B̄1/p

= λA + λ̄B. □

Let A ∈ Hn. If A =
[

A11 A12
A21 A22

]
, where A11 is of order k and invertible, then the

Schur complement, S(A), of A11 in A is defined as

S(A) = A22 − A21A−1
11 A12.

The following facts about the Schur complement can be found in many refer-
ences; see, e.g., [8, 6, 9, 13, 14].

Lemma 2.2. Let A =
[

A11 A12
A21 A22

]
and B =

[
B11 B12
B21 B22

]
be symmetric, positive definite

matrices such that A11 and B11 are k × k invertible matrices. Then
(i) |A| = |A11||S(A)|;
(ii) if A ≥ B, then S(A) ≥ S(B);
(iii) we have

S(A + B) ≥ S(A) + S(B), (2.2)

with equality if and only if A21A−1
11 = B21B−1

11 .

It is useful to present inequality (2.2) as the concavity of the Schur complement
S(·) (see, for example, [13, E.7.g]); that is to say, for A, B ∈ Hn and λ ∈ [0, 1],

S(λA + λ̄B) ≥ λS(A) + λ̄S(B). (2.3)

Lemma 2.3. Let a⃗ = (a1, . . . , am) and b⃗ = (b1, . . . , bm) represent two m-tuples of
positive real numbers. Suppose that q is a real number such that aq

1 ≥
∑m

j=2 aq
j and

bq
1 ≥

∑m
j=2 bq

j . If q ≥ 1, then(
(a1 + b1)q −

m∑
j=2

(aj + bj)q

)1/q

≥

(
aq

1 −
m∑

j=2
aq

j

)1/q

+
(

bq
1 −

m∑
j=2

bq
j

)1/q

. (2.4)

If 0 < q < 1, then inequality (2.4) is reversed. Moreover, equalities hold in these
inequalities if and only if either q = 1 or a⃗ = νb⃗, where ν is a positive constant.

A proof of Lemma 2.3 can be found in [12]. The inequality (2.4), which was first
proved by Bellman [3, p. 38], plays a crucial role in establishing (1.3).

Building upon the multiple triangle inequality on Rn, a multiple version of
Bellman’s inequality (2.4) exists, extending its applicability to multiple sets of
vectors (see [10, Proposition 2.6] for details).
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Lemma 2.4. For i = 1, 2, . . . , m, let a⃗i = (ai1, ai2, . . . , ail) denote l-tuples of non-
negative real numbers. Suppose that q is a real number such that aq

i1 ≥
∑l

j=2 aq
ij

for each i = 1, 2, . . . , m. If q ≥ 1, then((
m∑

i=1
ai1

)q

−
l∑

j=2

(
m∑

i=1
aij

)q)1/q

≥
m∑

i=1

(
aq

i1 −
l∑

j=2
aq

ij

)1/q

. (2.5)

Equality holds in (2.5) if and only if either q = 1 or the sets {a⃗i}m
i=1 are propor-

tional.

The following result, an equivalent formulation of the multiple Minkowski in-
equality, is highly beneficial for our analysis.

Lemma 2.5. Let ai and bi be non-negative real numbers such that ai ≥ bi for all
i = 1, 2, . . . , m. If 0 < q < 1, then((

m∑
i=1

ai

)q

−

(
m∑

i=1
bi

)q)1/q

≤
m∑

i=1
(aq

i − bq
i )1/q

. (2.6)

Equality holds in (2.6) if and only if ai = νbi for some ν > 0 and all i = 1, 2, . . . , m.

Proof. Note that for non-negative xi, yi with i = 1, 2, . . . , m and r > 1, the multiple
Minkowski inequality can be expressed as[

m∑
i=1

(xi + yi)r

]1/r

≤

(
m∑

i=1
xr

i

)1/r

+
(

m∑
i=1

yr
i

)1/r

, (2.7)

with equality if and only if the vectors (x1, x2, . . . , xm) and (y1, y2, . . . , ym) are
proportional.

Setting r = 1/q and xi = bq
i , yi = aq

i − bq
i in (2.7), we obtain(

m∑
i=1

ai

)q

≤

(
m∑

i=1
bi

)q

+
[

m∑
i=1

(aq
i − bq

i )1/q

]q

,

which yields the desired inequality. By the equality case of the multiple Minkowski
inequality (2.7), equality holds in (2.6) if and only if bq

i = µ(aq
i −bq

i ) for some µ > 0,
which implies ai = νbi for some ν > 0 and all i = 1, 2, . . . , m. □

3. The Lp Ky Fan determinant inequality and its variants

Lemma 3.1. Suppose p > 1 and λ ∈ [0, 1]. If M, N ∈ Hn are symmetric, positive
definite matrices such that |S(M)| = |S(N)| = 1, then

|S(λ · M +p λ̄ · N)| ≥ 1. (3.1)

For λ ∈ (0, 1), equality holds if and only if M = N .
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Proof. Recalling that for any A ∈ Hn, the Schur complement S(A) of A pos-
sesses positive definiteness. Consider M, N ∈ Hn. Employing (2.1), (2.3), and the
Minkowski determinant inequality (1.1) with n substituted by n − k, we obtain

|S(λ · M +p λ̄ · N)| ≥ |S(λM + λ̄N)|
≥ |λS(M) + λ̄S(N)|

≥
(
λ|S(M)|

1
n−k + λ̄|S(N)|

1
n−k
)n−k

= 1.

To establish the equality case of (3.1), we begin by setting M = N . This leads
to

|S(λ · M +p λ̄ · M)| =
∣∣S((λMp + λ̄Mp)

1
p
)∣∣

= |S(M)|
= 1.

Next, we assume that |S(λ · M +p λ̄ · N)| = 1. From (2.1), we infer that this
implies |λS(M) + λ̄S(N)| = 1. Invoking the equality case of inequality (1.1), we
deduce that S(M) = c S(N) for some c > 0. However, since |S(M)| = |S(N)|, it
follows that c = 1 and thus M = N . This establishes that |S(λ · M +p λ̄ · N)| = 1
implies M = N , completing the proof. □

Theorem 3.2. Suppose p > 1. If A, B ∈ Hn are two symmetric, positive definite
matrices, then (

|A +p B|
|(A +p B)k|

) p
n−k

≥
(

|A|
|Ak|

) p
n−k

+
(

|B|
|Bk|

) p
n−k

,

with equality if and only if A = cB for some c > 0.

Proof. In view of Lemma 2.2, it suffices to show that

|S(A +p B)|
p

n−k ≥ |S(A)|
p

n−k + |S(B)|
p

n−k . (3.2)
Setting

M = 1
|S(A)|

p
n−k

· A = 1
|S(A)|

1
n−k

A;

N = 1
|S(B)|

p
n−k

· B = 1
|S(B)|

1
n−k

B;

λ = |S(A)|
p

n−k

|S(A)|
p

n−k + |S(B)|
p

n−k

in Lemma 3.1, we have∣∣S(λ · (|S(A)|
p

k−n · A) +p λ̄ · (|S(B)|
p

k−n · B)
)∣∣ ≥ 1.

Applying the fact that c · A = c1/pA (c > 0) twice, we obtain
|S(µA +p µB)| ≥ 1,
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where µ =
(
|S(A)|

p
n−k + |S(B)|

p
n−k
)−1/p. Equivalently,∣∣S(µ (Ap + Bp)

1
p
)∣∣ ≥ 1.

Since the Schur complement is homogeneous of degree 1, we arrive at
|µS(A +p B)| ≥ 1,

which is equivalent to

|S(A +p B)| ≥
(
|S(A)|

p
n−k + |S(B)|

p
n−k
)n−k

p .

That confirms (3.2). The equality case follows immediately from that of (3.1). □

We denote the Lp combination of A1, . . . , Am ∈ Hn as ♯m
i=1 Ai, representing

A1 +p A2 +p · · · +p Am. By employing an induction argument, we can establish the
following Lp Ky Fan determinant inequality for multiple positive definite matrices.
Theorem 3.3. Suppose p > 1. Let A1, . . . , Am ∈ Hn be positive definite and
let (Ai)k denote the k-th leading principal submatrix of Ai, where i = 1, 2, . . . , m.
Then (

| ♯m
i=1 Ai|

|(♯m
i=1 Ai)k|

) p
n−k

≥
m∑

i=1

(
|Ai|

|(Ai)k|

) p
n−k

, (3.3)

with equality if and only if A1, . . . , Am are multiples of each other.
Proof. We prove the inequality using mathematical induction.

Based on Theorem 3.2, inequality (3.3) is established for m = 2.
Now, assuming that inequality (3.3) holds for m = r − 1 with r ≥ 3, we proceed

to the case where m = r as follows:(
| ♯r

i=1 Ai|
|(♯r

i=1 Ai)k|

) p
n−k

=
(

| ♯r−1
i=1 Ai +p Ar|

|(♯r−1
i=1 Ai +p Ar)k|

) p
n−k

≥
(

| ♯r−1
i=1 Ai|

|(♯r−1
i=1 Ai)k|

) p
n−k

+
(

|Ar|
|(Ar)k|

) p
n−k

≥
r∑

i=1

(
|Ai|

|(Ai)k|

) p
n−k

,

where the last inequality follows from the induction hypothesis. The equality case
is established based on Theorem 3.2 and the induction argument. □

Theorem 3.4. For i = 1, 2, . . . , m, let Ai ∈ Hn be symmetric, positive definite
matrices of order n, with (Ai)k representing the k-th leading principal submatrices
of Ai. Given 1 < p ≤ n − k and non-negative real numbers αi such that Ai > αiIn,
we have(

| ♯m
i=1 Ai|

|(♯m
i=1 Ai)k|

−

∣∣∣∣∣
( m∑

i=1
αp

i

)1/p

In−k

∣∣∣∣∣
) p

n−k

≥
m∑

i=1

(
|Ai|

|(Ai)k|
− |αiIn−k|

) p
n−k

. (3.4)

Equality holds in (3.4) if and only if either p = n − k or α−1
i Ai = α−1

j Aj for
1 ≤ i, j ≤ m with i ̸= j.
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Proof. Since Ai > αiIn, it follows from Lemma 2.2 that

|Ai|
|(Ai)k|

> αn−k
i for all i = 1, 2, . . . , m.

Setting q = n−k
p , l = 2, aq

i1 = |Ai|
|(Ai)k| , and ai2 = αp

i in Lemma 2.4, we obtain

m∑
i=1

(
|Ai|

|(Ai)k|
− |αiIn−k|

) p
n−k

≤

( m∑
i=1

(
|Ai|

|(Ai)k|

) p
n−k

)n−k
p

−

(
m∑

i=1
αp

i

)n−k
p


p

n−k

≤

(
| ♯m

i=1 Ai|
|(♯m

i=1 Ai)k|
−

∣∣∣∣∣
( m∑

i=1
αp

i

) 1
p

In−k

∣∣∣∣∣
) p

n−k

,

where the last inequality follows from (3.3).
Furthermore, by the equality case of Lemma 2.4, we see that when 1 < p <

n − k, equality holds in (3.4) if and only if |Ai|
|(Ai)k| is proportional to |αiIn−k| for all

i = 1, 2, . . . , m. This fact, combined with the equality case of Theorem 3.3, implies
that Ai = µαiIn for some µ > 0 and all i = 1, 2, . . . , m. Consequently, equality
holds in (3.4) if and only if α−1

i Ai = α−1
j Aj for all i, j = 1, 2, . . . , m such that

i ̸= j. This completes the proof. □

It is evident that when m = 2, Theorem 3.4 reduces to Theorem 1.2 presented
in the Introduction. Moreover, when αi = 0 for all i = 1, 2, . . . , m, it retrieves the
multiple Lp Ky Fan inequality (Theorem 3.3) for 1 < p ≤ n − k.

Theorem 3.5. For i = 1, 2, . . . , m, let Ai ∈ Hn be symmetric, positive definite
matrices of order n, with (Ai)k representing the k-th leading principal submatrices
of Ai. Given p > n − k and positive real numbers αi such that 0 < Ai < αiIn, we
have

∣∣∣∣∣∣
(

m∑
i=1

αp
i

)1/p

In−k

∣∣∣∣∣∣− | ♯m
i=1 Ai|

|(♯m
i=1 Ai)k|


p

n−k

≤
m∑

i=1

(
|αiIn−k| − |Ai|

|(Ai)k|

) p
n−k

. (3.5)

Equality holds in (3.5) if and only if α−1
i Ai = α−1

j Aj for 1 ≤ i, j ≤ m with i ̸= j.

Proof. Since 0 < Ai < αiIn, it follows from Lemma 2.2 that

αp
i =

(
|αiIn|

|(αiIn)k|

) p
n−k

>

(
|Ai|

|(Ai)k|

) p
n−k

> 0 for all i = 1, 2, . . . , m.
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Setting ai = αp
i , bi =

(
|Ai|

|(Ai)k|

) p
n−k , and q = n−k

p in Lemma 2.6, we obtain

m∑
i=1

(
|αiIn−k| − |Ai|

|(Ai)k|

) p
n−k

≥

( n∑
i=1

αp
i

)n−k
p

−

(
m∑

i=1

(
|Ai|

|(Ai)k|

) p
n−k

)n−k
p


p

n−k

≥

 ∣∣∣∣∣∣
(

m∑
i=1

αp
i

) 1
p

In−k

∣∣∣∣∣∣− | ♯m
i=1 Ai|

|(♯m
i=1 Ai)k|


p

n−k

,

where the last inequality follows from Theorem 3.3.
The equality case can be established using a similar argument to the one used

for Theorem 3.4. □

It is easily seen that Theorem 1.3 from the Introduction is a special case (m = 2)
of Theorem 3.5.
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