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THE NEWMAN ALGORITHM FOR CONSTRUCTING
POLYNOMIALS WITH RESTRICTED COEFFICIENTS

AND MANY REAL ROOTS

MARKUS JACOB AND FEDOR NAZAROV

Abstract. Under certain natural sufficient conditions on the sequence of uni-
formly bounded closed sets Ek ⊂ R of admissible coefficients, we construct a
polynomial Pn(x) = 1 +

∑n

k=1 εkxk, εk ∈ Ek, with at least c
√

n distinct
roots in [0, 1], which matches the classical upper bound up to the value of the
constant c > 0. Our sufficient conditions cover the Littlewood (Ek = {−1, 1})
and Newman (Ek = {0, (−1)k}) polynomials and are also necessary for the
existence of such polynomials with arbitrarily many roots in the case when
the sequence Ek is periodic.
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2. Introduction

Consider a sequence E of uniformly bounded closed sets E1, E2, . . . , Ek, . . . ⊂ R.
The uniform boundedness condition means that there exists A ∈ (0,+∞) such that
Ek ⊂ [−A,A] for all k ∈ N. Let P = P(E) be the set of all polynomials of the form

Pn(x) = 1 +
n∑

k=1
εkx

k, εk ∈ Ek.

What is the maximal number r of distinct roots a polynomial Pn ∈ P of a given
degree n can have in [0, 1] or, equivalently, for a given r ∈ N, what is the lowest
possible degree n of a polynomial Pn ∈ P with at least r distinct roots in [0, 1]?
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The now classical result is that the inequality

r ≤ C(A)
√
n (2.1)

always holds with some C(A) ∈ (0,+∞) depending on A only. One can find this
estimate, for instance, in [3], which goes back to 1999. For the reader’s convenience,
we also present a proof in the appendix.

The question then becomes if (or when) this bound is asymptotically sharp for
large n up to the value of the numerical constant C(A). As far as we know, in this
form it has not been previously answered even for such natural and well-known
families as Littlewood polynomials (Ek = {−1, 1}) and Newman polynomials1

(Ek = {0, (−1)k}). In both cases the best published lower bounds for r seem
to be polylogarithmic in terms of n. Some more substantial progress has been
made for the polynomials with integer coefficients of height 1 (Ek = {−1, 0, 1}). In
this case it was shown in [4] that r ≥ cn1/4. The interested reader can find more
related results and the general overview of the history of the question in [3].

To motivate our next definition, let us consider one simple obstacle that prevents
polynomials in P(E) from having many roots in [0, 1] regardless of their degree.
Suppose that the sequence Ek is M -periodic (Ek+M = Ek for all k ∈ N) and∑M

k=1 maxEk ≤ 0. Then we can choose real numbers ck ≥ maxEk (k = 1, . . . ,M)
with

∑M
k=1 ck = 0 and, for n = ℓM + m, 0 ≤ m < M , represent any polynomial

Pn ∈ P as

Pn(x) = 1 + P (x)(1 − xℓM )
1 − xM

+Q(x) +R(x),

where P (x) =
∑M

k=1 ckx
k, Q(x) =

∑n
k=ℓM+1 εkx

k and R(x) has non-positive co-
efficients. Note now that P (1) = 0, so there is a polynomial P̃ of degree at most
M − 1 such that P (x) = (1 − x)P̃ (x). Denoting S(x) =

∑M−1
k=0 xk, we obtain

S(x)Pn(x) = S(x) + P̃ (x) − xℓM P̃ (x) + S(x)Q(x) + S(x)R(x).

Hence, a coefficient in the expansion of S(x)Pn(x) can be positive only if the
corresponding coefficient in the expansion of S(x) + P̃ (x) − xℓM P̃ (x) + S(x)Q(x)
is positive as well. However, the latter polynomial can have non-zero coefficients
only at the powers k ∈ [0,M − 1] ∪ [ℓM + 1, (ℓ + 2)M − 2]. Thus, the coefficient
sequence of S(x)Pn(x) can have at most 3M sign changes, and, therefore, by the
Descartes rule of signs, we have r ≤ 3M as well. Essentially the same argument
with the same conclusion applies to the case

∑M
k=1 minEk ≥ 0.

Thus, for M -periodic sequences E , the necessary condition for the possibility to
have arbitrarily many roots in [0, 1] for some polynomial Pn ∈ P(E) is

M∑
k=1

minEk < 0 and
M∑

k=1
maxEk > 0. (2.2)

1The standard definition of the Newman polynomials restricts the coefficients to the set {0, 1}
but then the question about roots should be asked on [−1, 0), so we took the liberty to change
the variable to −x to place this family into our general framework.
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POLYNOMIALS WITH RESTRICTED COEFFICIENTS AND MANY ROOTS 747

Since we want to deal with not necessarily periodic sequences E , we generalize (2.2)
as follows.

Definition. We call a sequence E of uniformly bounded closed sets Ek ⊂ R bal-
anced if there exist M ∈ N, a > 0 such that for every n ≥ 0, one has

M∑
k=1

minEn+k ≤ −a and
M∑

k=1
maxEn+k ≥ a.

Note that for periodic sequences the condition of being balanced is equivalent
to (2.2) and that the sequences E corresponding to the Littlewood and Newman
polynomial families are balanced with parameters M = 2 and a = 1, say.

Our main result is the following.

Theorem. If a sequence E of uniformly bounded closed sets Ek ⊂ [−A,A] is
balanced with parameters M , a, then for every r ∈ N, there exists a polynomial
Pn ∈ P(E) of degree n ≤ C(A, a,M)r2 that has at least r distinct roots in [0, 1].
Moreover, this polynomial can be obtained by an explicit algorithm with running
time polynomial 2 in r.

The rest of the paper is organized as follows. In Section 3, we present the
classical Jensen bound on the possible smallness of polynomials from P on the
interval I(α) = [1 − 2α, 1 − α] with α ∈ (0, 1

3 ). In Section 4, we show how it can
be used to force many roots on that interval and reduce the problem to building
a power series with restricted coefficients converging to 0 at finitely many given
points. In Section 5, we present the Newman Decomposition Lemma (compare
with the argument in [2, Section 3, pp. 103–105]), which serves as the main tool
for all subsequent constructions. Section 6 reduces the construction of the power
series from Section 4 to the investigation of a certain one-dimensional controlled
dynamical system. Section 7 is devoted to the analysis of this system and the
appropriate control choice. It completes the formal existence proof. Section 8
discusses the corresponding algorithm, its running time, and some details of its
implementation. The Appendix contains the proof of the upper bound (2.1).

3. The Jensen estimate

Lemma 1. Let α ∈ (0, 1
3 ) and let E be a uniformly bounded sequence of closed sets

Ek ⊂ [−A,A]. Then for every Pn ∈ P(E), we have∫
I(α)

log− |Pn(x)| dx ≤ C(A),

where I(α) = [1 − 2α, 1 − α] and log− z = max(0,− log z).

2The running time bound proved in this paper is Õ(r5), where the tilde over O means that
we ignore factors logarithmic in r.
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Proof. Consider the polynomal Pn(z) in the domain Ω = ( 1
3 + 2

3D) \ [1 − 2α, 1],
where D = {z : |z| < 1} is the unit disk. Denote by ω the harmonic measure on
∂Ω associated with 0. We obtain

0 = log |Pn(0)| ≤
∫

∂Ω
log |Pn| dω =

∫
∂Ω

log+ |Pn| dω −
∫

∂Ω
log− |Pn| dω. (3.1)

Everywhere in the unit disk, we have the estimate

|Pn(z)| ≤ 1 +A

∞∑
k=1

|z|k ≤ max(1, A) 1
1 − |z|

.

Also, on the boundary ∂Ω, we have 1
1−|z| ≤ 4

|1−z|2 . Indeed, on [1 − 2α, 1], we can
write

1
1 − |z|

= 1
|1 − z|

≤ 1
|1 − z|2

,

while on the circle 1
3 + 2

3T, we have |z − 1
3 |2 = 4

9 , i.e., 3|z|2 − 2ℜz − 1 = 0, or

|1 − z|2 = 2(1 − |z|2) = 2(1 − |z|)(1 + |z|) ≤ 4(1 − |z|), (3.2)

which is equivalent to the claimed inequality.
Thus ∫

∂Ω
log+ |Pn| dω ≤

∫
∂Ω

log+
4 max(1, A)

|1 − z|2
dω(z)

=
∫

∂Ω
log 4 max(1, A)

|1 − z|2
dω(z) ≤ log[4 max(1, A)]

because z 7→ log 4 max(1,A)
|1−z|2 is a non-negative harmonic function in Ω, so the integral

of its boundary values with respect to ω does not exceed its value at 0. Hence, by
(3.1), ∫

∂Ω
log− |Pn| dω ≤ log[4 max(1, A)]

as well.
It remains to show that dω(z) ≥ c|dz| on I(α) with some absolute c > 0. To

this end, we first apply the conformal mapping ζ = ζ(z) = −i z−1
z+ 1

3
, which maps Ω

to the upper half-plane with a vertical slit from 0 to ih with h = 2α
4
3 −2α

. Note that

ζ(0) = 3i, ζ(1 − 2α) = ih, ζ(1 − α) = ih′ = i
α

4
3 − α

, ζ(1) = 0.

Also,
|dζ| = 4

3|z + 1
3 |2

|dz| ≥ 3
4 |dz|

on I(α). Now apply the second conformal mapping ξ = ξ(ζ) =
√
ζ2 + h2, which

(with an appropriate choice of the branch of the square root) maps the upper
half-plane with the slit [0, ih] to the upper half-plane. Then

ξ(3i) = i
√

9 − h2, ξ([0, ih]) = [−h, h],
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and

|dξ| = |ζ|√
|ζ2 + h2|

|dζ| ≥ h′

h
|dζ|

on [ih′, ih]. Finally, the harmonic measure on the line R with respect to the point
i
√

9 − h2 is just
1
π

√
9 − h2

ξ2 + (9 − h2) |dξ| ≥ 1
π

√
9 − h2

9 |dξ|

on [−h, h].
Bringing all these estimates together and observing that each point ζ on the slit

splits into two points ξ on R, we obtain

dω(z) ≥ 1
π

√
9 − h2

9
2h′

h

3
4 |dz|

for z ∈ I(α). It remains to note that h = 2α
4
3 −2α

≤ 1 and 2h′

h =
4
3 −2α
4
3 −α

≥ 2
3 for

α ∈ (0, 1
3 ), so we can take c = 1

π

√
8

9
2
3

3
4 =

√
2

9π , say, and finally get∫
I(α)

log− |Pn(x)| dx ≤ 9π√
2

log[4 max(1, A)].

Of course, we by no means pretend that this bound is sharp. □

4. Forcing roots

To ensure that Pn has many roots in [0, 1], we will use the following elementary
lemma.

Lemma 2. Let I be an interval and let f : I → R be a continuous function on I.
Split I into s− 1 equal subintervals Ij. If 1

|I|
∫

I
log− |f | ≤ β and 1

|Ij |
∣∣∫

Ij
f

∣∣ < e−2β

for each j, then f has at least s−1
2 roots on I.

Proof. Since 1
|I|

∫
I

log− |f | ≤ β, we can conclude that for at least s−1
2 intervals Ij ,

one has 1
|Ij |

∫
Ij

log− |f | ≤ 2β. But for each such Ij , we have

1
|Ij |

∫
Ij

|f | ≥ exp
[

1
|Ij |

∫
Ij

log |f |

]
≥ exp

[
− 1

|Ij |

∫
Ij

log− |f |

]
≥ e−2β >

1
|Ij |

∣∣∣∣∫
Ij

f

∣∣∣∣,
so f has to change sign on Ij . □

We shall apply Lemma 2 to the function f(x) = xL−1Pn(x) with some suitably
chosen L > 0, the value s = 2r, and the interval I(α) = [1 − 2α, 1 −α]. In this case
we shall have by the Jensen estimate (Lemma 1)

1
|I(α)|

∫
I(α)

log− |f | ≤ C(A)
α

+ L log 1
1 − 2α =: β.
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Let now x1 < x2 < · · · < xs be the endpoints of the s− 1 intervals of equal length
tiling I(α). Then∫

[xj ,xj+1]
f =

∫
[xj ,xj+1]

xL−1

[
1 +

n∑
k=1

εkx
k

]
dx = xLQn(x)

∣∣xj+1

xj
,

where

Qn(x) = 1
L

+
n∑

k=1

εk

L+ k
xk.

Thus, to force r roots of Pn on I(α), it will suffice to ensure that |Qn(xj)| <
α

2(s−1)e
−2β for all j = 1, . . . , s = 2r.

To this end, we shall construct an infinite series

Q(x) = 1
L

+
∞∑

k=1

εk

L+ k
xk, εk ∈ Ek,

such that Q(xj) = 0 for all j = 1, . . . , s. Truncating it at k = n, we will then get

|Qn(xj)| ≤
∞∑

k=n+1

|εk|
L+ k

xk
j ≤

∞∑
k=n+1

A

L+ k
(1 − α)k ≤ A

α(L+ n)e
−nα.

Bringing all these observations and estimates together, we see that Pn will have at
least r roots on I(α) ⊂ [0, 1] if Q(xj) = 0 for j = 1, . . . , s and n satisfies

nα+ log α(L+ n)
A

+ log α

2(s− 1) > 2
[
C(A)
α

+ L log 1
1 − 2α

]
. (4.1)

Below we will prove the following result.

Proposition. For every M ∈ N, A, a > 0, there exists η ∈ (0, 1
3 ) and L0 > 0 such

that if
• a sequence of closed sets Ek ⊂ [−A,A] is balanced with parameters M,a,
• s ∈ N and x1, . . . , xs ∈ (0, 1) satisfy

∏s
j=1 xj ≥ 1 − η,

• L ≥ max(L0,
s
η ),

then there exists a power series

Q(x) = 1
L

+
∞∑

k=1

εk

L+ k
xk, εk ∈ Ek,

satisfying Q(xj) = 0 for all j = 1, . . . , s.

We then can take s = 2r and α = η
2s . In this case, for any xj ∈ I(α), we shall

have
∏s

j=1 xj ≥ 1 − η, so choosing L = max(L0,
s
η ), we will be able to apply the

proposition to establish the existence of the power series Q(x) we need. On the
other hand, it is easy to see that, for this choice of parameters, the inequality (4.1)
will, indeed, be satisfied for n = Cr2 with sufficiently large C > 0 depending on
A, a,M only. Hence the proof of our theorem will be complete once the proposition
is established.
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5. Newman’s Decomposition Lemma

Lemma 3. For every δ > 0, there exists η = η(δ) ∈ (0, 1
3 ) such that for every

s ∈ N and every x1, . . . , xs ∈ (0, 1) with
∏s

j=1 xj ≥ 1 − η, there exist νk ∈ R,
k = 0, 1, . . . , satisfying

∑∞
k=0 |νk| < δ and such that

x−1
j − 1 =

∞∑
k=0

νkµ
kxk

j (5.1)

for all j = 1, . . . , s, where µ = 1 − η
s .

Proof. Fix ℓ = ℓ(δ) ∈ N sufficiently large and define

B(z) =
s∏

j=1

1 − µxjz

µxj(µxj − z) , Gℓ(z) = 1 − ℓ+ 1
ℓ

z−1 + 1
ℓ
z−ℓ−1.

For k = 0, 1, . . . , put

ck =
∮
T
B(z)Gℓ(z)zk dz

2πi ,

where, as usual, T = {z : |z| = 1} is the unit circle traversed counterclockwise.
Note that

∞∑
k=0

ckµ
kxk

j =
∮
T
B(z)Gℓ(z)

1
1 − µxjz

dz

2πi

and the integrand on the right hand side has no poles outside the unit disk because
1−µxjz in the denominator cancels with the same factor in the numerator of B(z).
Hence, the right hand side evaluates to the residue of the integrand at ∞, which is
− 1

µxj
.

Next we shall find a summable majorant Ck for ck. To this end, we will shift the
contour to Γ = 1

3 + 2
3T. Note that the factor 1−µxjz

µxj(µxj−z) maps T to 1
µxj

T and the
circle 1

2 + 1
2T with diameter [0, 1] to the circle with diameter [− 1

µxj
, 1

(µxj)2 ]. The
image of Γ is squeezed in between, so

|B(z)| ≤
s∏

j=1

1
(µxj)2 ≤ 1

(1 − η)4 ≤ 6

for every z ∈ Γ as long as η ∈ (0, 1
3 ). Now put

Ck = 6
∫

Γ
|Gℓ(z)||z|k

|dz|
2π

and notice that Ck depends neither on η, nor on the choice of xj .
Observe also that Gℓ has a root of multiplicity 2 at 1, so |Gℓ(z)| ≤ γℓ|z − 1|2

on Γ with some γℓ ∈ (0,+∞). Thus
∞∑

k=0
Ck ≤ 3γℓ

∫
Γ

|z − 1|2

1 − |z|
|dz|
π

(3.2)
≤ 12γℓ

∫
Γ

|dz|
π

= 16γℓ.
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On the other hand, since B(z) is analytic outside the unit disk, B(∞) = 1, and
|B(z)| =

∏s
j=1

1
µxj

≤ 1
(1−η)2 when z ∈ T, we have∫

T
|B(z) − 1|2 |dz|

2π =
∫
T

|B(z)|2 |dz|
2π − 1 ≤ 1

(1 − η)4 − 1 → 0

as η → 0, i.e., B converges to 1 in L2(T) as η → 0. Hence, for every fixed
k = 0, 1, . . . , we have

ck →
∮
T
Gℓ(z)zk dz

2πi =


− ℓ+1

ℓ , k = 0;
1
ℓ , k = ℓ;
0 otherwise.

Setting ν0 = −µc0 − 1, νk = −µck for k = 1, 2, . . . , we conclude that (5.1) holds
and also

∑∞
k=0 |νk| → 2

ℓ as η → 0 by the dominated convergence theorem. It
remains to choose ℓ > 2

δ and to notice that ck and, thereby, νk are real because

B(z̄)Gℓ(z̄) = B(z)Gℓ(z). □

6. Trap TΨ,Λ

For x1, . . . , xs ∈ (0, 1), introduce the notation

wk =

x
k
1
...
xk

s

, k ∈ Z.

Then we are looking for a sequence εk ∈ Ek such that the series 1
Lw0+

∑∞
k=1

εk

L+kwk

converges to 0 in Rs. Note that since all xj ∈ (0, 1) and |εk| ≤ A for all k, the series
always converges, so it will be enough to ensure that some subsequence of partial
sums tends to 0. Let S = diag[x−1

1 , . . . , x−1
s ] be the linear operator satisfying

Swk = wk−1 for all k ∈ Z.
Define

W (n) = (L+ n)Sn

[
1
L
w0 +

n∑
k=1

εk

L+ k
wk

]
.

Then W (0) = w0, and the values W (n) satisfy the controlled recurrence

W (n+ 1) = L+ n+ 1
L+ n

SW (n) + εn+1w0, (6.1)

where, from now on, we will think of the mapping Rs ∋ W 7→ L+n+1
L+n SW ∈ Rs

as an unstable time-dependent dynamical system (with n playing the role of time)
and of the sequence εn ∈ En as a control that we can choose to try to stabilize it.

Our goal will be to build a bounded trap T ⊂ Rs such that W (0) = w0 ∈ T
and if W (n) ∈ T for some n ≥ 0, then we can ensure by an appropriate choice
of εn+1, . . . , εn+m that W (n + m) ∈ T for some m ≥ 1 again. If such a trap is
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constructed, then we shall have W (n) ∈ T or, equivalently,

1
L
w0 +

n∑
k=1

εk

L+ k
wk ∈ 1

L+ n
S−nT,

for infinitely many n. But 1
L+nS

−nT shrinks to 0 as n → ∞, so the desired
convergence to 0 will be established.

To this end, fix δ > 0 to be chosen later and take η = η(δ) ∈ (0, 1
3 ) given by the

Newman Decomposition Lemma (Lemma 3). Then for any choice of x1, . . . , xs ∈
(0, 1) satisfying

∏s
j=1 xj ≥ 1 − η, we have the decomposition

w−1 = w0 +
∞∑

k=0
νkµ

kwk with
∞∑

k=0
|νk| < δ, (6.2)

where, as before, µ = 1 − η
s .

We shall be interested in the representations

W (n) = ψnw0 +
∞∑

k=1
λn,kµ

kwk, ψn, λn,k ∈ R.

Since W (0) = w0, we can set ψ0 = 1, λ0,k = 0 for k = 1, 2, . . . . Using the recurrence
(6.1) and the Newman decomposition (6.2) of w−1 = Sw0, we see that we can put

ψn+1 = L+ n+ 1
L+ n

[ψn + ν0ψn + µλn,1] + εn+1 (6.3)

and

λn+1,k = L+ n+ 1
L+ n

[µλn,k+1 + ψnνk]. (6.4)

Now put Uk =
∑∞

i=k |νi|, k = 0, 1, . . . , and fix a big Λ > 0. Assume that L is chosen
so that L+1

L µ ≤ 1 (L ≥ s
η will suffice for this). Assume also that |λn,k| ≤ ΛUk for

all k = 1, 2, . . . and that |ψn| ≤ µΛ. Note that these inequalities hold for n = 0,
provided that Λ ≥ 3

2 , say. Then

|λn+1,k| ≤ L+ n+ 1
L+ n

[
µ|λn,k+1| + |ψn||νk|

]
≤ L+ 1

L

[
µΛUk+1 + µΛ|νk|

]
= L+ 1

L
µΛUk ≤ ΛUk

again.
Thus, we shall not lose control over |λn,k| before we encounter ψn with |ψn| >

µΛ. Our task now is to show that if Λ = Λ(A, a,M) is chosen large enough and
δ = δ(A, a,M) is chosen small enough (in this order), then we can keep |ψn| under
µΛ for all n by choosing our control εn in an appropriate way.

From the technical standpoint, it becomes just a question about the controlled
one-dimensional dynamics of ψn given by (6.3). It will suffice to show that there
exists Ψ ∈ [1, µΛ] such that if |ψn| ≤ Ψ, then also for some m ∈ N, we have
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|ψn+m| ≤ Ψ while |ψn+1|, |ψn+2|, . . . , |ψn+m−1| ≤ µΛ (but not necessarily ≤ Ψ).
Then the set

T = TΨ,Λ =
{
ψw0 +

∞∑
k=1

λkµ
kwk : |ψ| ≤ Ψ, |λk| ≤ ΛUk

}
will be our desired trap. Note that all entries of all vectors in T do not exceed
Ψ + Λδ

∑∞
k=1 µ

k = Ψ + Λδ
1−µ in absolute value, so T is, indeed, bounded.

7. One-dimensional controlled dynamics

Let us see first how fast ψn can grow in principle regardless of the choice of the
controls εn. We have

ψn+1 = ψn + ∆n + εn+1,

where

|∆n| =
∣∣∣∣ 1
L+ n

ψn + L+ n+ 1
L+ n

(ν0ψn + µλn,1)
∣∣∣∣

≤ 1
L
µΛ + L+ 1

L
(|ν0|µΛ + µΛU1)

= 1
L
µΛ + L+ 1

L
µΛU0 ≤

(
1
L

+ δ

)
Λ

as long as |ψn| ≤ µΛ. We also have |εn+1| ≤ A.
Thus, if we start with |ψn| ≤ Ψ < µΛ and run into trouble after m steps (i.e.,

have |ψn|, |ψn+1|, . . . , |ψn+m−1| ≤ µΛ but |ψn+m| > µΛ), we must have

m

[(
1
L

+ δ

)
Λ +A

]
> µΛ − Ψ.

If we now choose Ψ = Λ
3 = 3MA+ 1 and 1

L , δ ≤ 1
9M , we shall have

µΛ − Ψ ≥ 2
3Λ − 1

3Λ = Ψ

and (
1
L

+ δ

)
Λ +A ≤ 2

9M 3Ψ + 1
3MΨ = Ψ

M
,

so m > M . Thus, starting with |ψn| ≤ Ψ, we shall be safe with our values of
ψn+1, . . . , ψn+M for any choice of the controls. The choice we will make is the one
pushing ψn+1 towards 0 as hard as possible. More precisely, we will define

εn+1 =
{

minEn+1, ψn + ∆n ≥ 0;
maxEn+1, ψn + ∆n < 0.

(7.1)

With this control, two things may happen.
One possibility is that for some m ∈ {1, . . . ,M}, there is at least one sign change

in the sequence ψn+m−1, ψn+m−1 + ∆n+m−1, ψn+m. In this case, we have

|ψn+m| ≤ |∆n+m−1| + |εn+m| ≤
(

1
L

+ δ

)
Λ +A ≤ Ψ

M
≤ Ψ,
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so we have returned to our trap T and may start counting all over.
The other possibility is that all the numbers ψn+m−1 + ∆n+m−1, m = 1, . . . ,M ,

and ψn+m, m = 0, . . . ,M , are of the same sign and we have εn+m = minEn+m if
this sign is positive or εn+m = maxEn+m if it is negative all the way from 1 to M .
This case requires a bit more careful alalysis. Suppose that the sign is positive
and εn+m = minEn+m for m = 1, . . . ,M . Then, using the condition that our
sequence E of sets is balanced with parameters M,a, we get

ψn+M = ψn +
M∑

m=1
∆n+m−1 +

M∑
m=1

minEn+m ≤ Ψ +M

(
1
L

+ δ

)
Λ − a.

Thus, to be certain that ψn+M ≤ Ψ in this case, we need to impose yet another
condition on L and δ, which is

1
L
, δ ≤ a

2MΛ = a

6M(3MA+ 1) .

The same condition will suffice for the case when the sign is negative and we choose
all maxima.

The final choice of the parameters will then be the following:

Λ = 3(3MA+ 1), Ψ = 3MA+ 1, δ = min
(

1
9M ,

a

6M(3MA+ 1)

)
,

η = η(δ), L0 = max
(

6M(3MA+ 1)
a

, 9M
)
, L ≥ max

(
L0,

s

η

)
.

It is easy to see that Λ,Ψ, δ, η, L0 depend on A, a,M only, so the proof of the
proposition is complete.

8. The algorithm

It should be clear now how to build an algorithm for finding a polynomial Pn ∈
P(E) with a given number r of roots in principle. Given r, one should choose
s ≥ r + 1, n ≍ r2, L ≍ r, η ≍ 1 and set α = η

2s , µ = 1 − η
s . Then one needs

to choose the points x1, . . . , xs ∈ I(α) and compute ν0, ν1, . . . , νn (the rest of the
coefficients in the Newman decomposition are never used in the determination of
ε1, . . . , εn). Finally, one can initialize ψ = 1, λk = 0 and update their values
according to (6.3) and (6.4) choosing the coefficient sequence εn as in (7.1).

The total running time is the time of the pre-computation of νk plus the time of
the determination of the coefficients. Since each coefficient determination requires
updating an array of length n, we get n steps that take ≍ n elementary arithmetic
operations each. So it looks like we need about n2 ≍ r4 operations for this part.
However, as it is usual with the real number computations, the question of the
propagation of the rounding errors arises.

In theory, we are just running the exponentially unstable dynamics

W (0) = w0, W (m+ 1) = L+m+ 1
L+m

SW (m) + εm+1w0
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and trying to stabilize it by choosing an appropriate control sequence εm. A small
issue, however, is that we determine εm not from the vectors W (m) directly, but
rather from their representations

W (m) = ψmw0 +
∞∑

k=1
λm,kµ

kwk,

so the adequate computation model seems to be given by

Ŵ (m) = ψ̂mw0 +
∞∑

k=1
λ̂m,kµ

kwk,

ψ̂m+1 = L+m+ 1
L+m

(ψ̂m + ν0ψ̂m + µλ̂m,1) + ε̂m+1 +O(τ),

λ̂m+1,k = L+m+ 1
L+m

(µλ̂m,k+1 + ψ̂mνk) +O(τ),

(8.1)

where τ is the fixed point rounding error and ε̂m are determined as in (7.1) but
using the (erratic) values ψ̂m and λ̂m,k instead of the true ψm and λm,k, i.e,

ε̂m+1 =

minEm+1,
L+m+1

L+m (ψ̂m + ν0ψ̂m + µλ̂m,1) ≥ 0;

maxEm+1,
L+m+1

L+m (ψ̂m + ν0ψ̂m + µλ̂m,1) < 0.

It is not hard to see that if we allow ourselves some extra leeway in the inequalities
for Λ, Ψ, L and δ, then we will not need very high precision to stabilize the
erratic dynamics. Indeed, as far as λ̂m,k are concerned, we just notice that if
|λ̂m,k| ≤ δ + ΛUk and ψ̂m ≤ µΛ, we can write

|λ̂m+1,k| ≤ L+ 1
L

[µ(δ + ΛUk+1) + µΛνk] +O(τ)

≤
[
L+ 1
L

µδ +O(τ)
]

+ ΛUk ≤ δ + ΛUk,

as long as L+1
L µδ < δ and O(τ) is too small to span the difference. Recalling

that µ = 1 − η
s and taking L ≥ 2s

η , we see that the precision τ ≍ r−1 is already
enough to keep the values λ̂m,k bounded by 2δ as long as |ψ̂m| remains bounded by
µΛ. Stabilizing the one-dimensional dynamics of ψ̂m then imposes an even weaker
restriction on τ . We just need to add an extra O(τ) term to the estimate for |∆m|
in all previous calculations, where we can afford even a constant leeway.

However, the real issue is not the stabilization of the erratic dynamics per se,
but ensuring that the true dynamics with the controls ε̂m based on the erratic
computations results in not too large vectors W (m). More precisely, we need to
show that for the sequence of vectors defined by

W (0) = w0, W (m+ 1) = L+m+ 1
L+m

SW (m) + ε̂m+1w0,

we still have a decent bound on the size of W (n). To this end, we will just compare
W (m) to Ŵ (m), for which we know a good bound from the bounds on ψ̂m and
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λ̂m,k. Taking (8.1) into account, we see that the values Ŵ (m) satisfy

Ŵ (0) = w0, Ŵ (m+ 1) = L+m+ 1
L+m

SŴ (m) + ε̂m+1w0 + 1
1 − µ

O(τ),

where the last term is obtained by summing up the rounding errors in ψ̂m+1 and
λ̂m+1,k, i.e., evaluating the sum

∑∞
k=0 µ

kO(τ).
Thus,

W (m+ 1) − Ŵ (m+ 1) = L+m+ 1
L+m

S(W (m) − Ŵ (m)) + 1
1 − µ

O(τ),

whence, by induction on m,∣∣W (m) − Ŵ (m)
∣∣ ≤ 1

1 − µ
O(τ)

m−1∑
k=0

∥S∥k ≤ 1
1 − µ

O(τ) (1 − 2α)−m+1

2α

because ∥S∥ ≤ 1
1−2α as all xj ≥ 1 − 2α. Recalling that µ = 1 − η

s and α = η
2s , we

see that ∣∣W (n) − Ŵ (n)
∣∣ ≤ O(s2)eO(n/s)O(τ).

Since s ≍ r and n ≍ r2, we conclude that to keep the difference W (n) − Ŵ (n)
bounded in this computational model, we need to choose τ = e−Cr with sufficiently
large C.

Now we can address the question of the required precision of the computation
of µ and νk. It should be clear at this point that, for our model to be justified,
their values must be computed with the same precision τ . That is not a big deal
for µ, which is given by a simple arithmetic formula in terms of our parameters,
but the computation of the νk, which are obtained by contour integration, requires
a separate discussion. Recall that the νk are obtained by elementary expressions
from

ck =
∮
T
B(z)Gℓ(z)zk dz

2πi ,

so it will suffice to compute ck with precision τ for k = 0, . . . , n. To this end, we
suggest just to discretize the integral to the sum

1
N

N−1∑
j=0

B
(
e2πij/N

)
Gℓ

(
e2πij/N

)
e2πij(k+1)/N

for sufficiently large N > n + 1 that is a power of 2 and to use the fast Fourier
transform. Note that, for 0 ≤ k < N − 1, this sum, even if computed exactly, is
not the true value of ck but ck + ck+N + ck+2N + . . . . Fortunately, since all poles
of B(z) and Gℓ(z) lie reasonably deep inside the unit disk, |ck| decays fairly fast
as k → ∞. To get a simple yet sufficient bound for our purposes, we will just
shift the contour to uT with u = 1 − η

2s and observe that for each Blaschke factor
1−µxjz

µxj(µxj−z) , we have

|1 − µxjuz| ≤ |1 − u| + |1 − µxjz| ≤ 3
2 |1 − µxjz|,
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while
|µxj − uz| ≥ |µxj − z| − |1 − u| ≥ 1

2 |µxj − z|,

so |B(uz)| ≤ 3s|B(z)| ≤ 3s

(1−η)2 when z ∈ T. As to Gℓ, we just use the estimate
maxz∈T |Gℓ(uz)| ≤ u−ℓ−1 maxz∈T |Gℓ(z)|. At last, uk = (1 − η

2s )k ≤ e− ηk
2s . Thus,

to make the sum ck+N + ck+2N + . . . negligible (i.e., less than τ = e−Cr), we can
take any N for which 3se− ηN

2s is substantially smaller than e−Cr, which forces us
to choose N ≍ r2 too.

Thus, the cost of the pre-computation is about sN + N logN ≍ r3 elementary
arithmetic operations, which is r times less than the cost of computing all the
coefficients ε̂m, m = 1, . . . , n. The total running time is then about r4 times the
time needed for an elementary arithmetic operation on Cr-digit numbers, which is
Õ(r). This gives the Õ(r5) claimed in the statement of the theorem.

Finally, a few words about the practical implementation, if somebody feels a
desire to try it. While the orders of magnitude in the above discussion are all cor-
rect, the numerical constants given by our rigorous proofs are certainly suboptimal,
so the best way to choose an appropriate value for η and ℓ is by trial and error.
This won’t waste too much time because if the blow-up in our dynamical system
occurs at all, it usually happens rather fast and can be seen after about r iterations
already. Also, while the theory guarantees r roots for s = 2r, in practice s = r+ 1
may already be enough.

Appendix

In this section we shall prove the classical bound r ≤ C(A)
√
n for the number r

of the roots of a polynomial Pn(x) = 1 +
∑n

k=1 εkx
k with |εk| ≤ A on the interval

[0, 1]. This bound holds for the number of roots counted with multiplicity, so
no assumption that the roots are distinct will be required in the proof. Since
Pn(0) = 1, it is enough to get an estimate for the number of roots of Pn in (0, 1]. We
shall follow the exposition in [1, Theorem 5, p. 55] with some minor modifications.

Suppose that one can construct a polynomial q of degree m with real roots such
that

q(0) = 1,
n∑

k=1
|q(k)| < 1

A
.

Then the polynomial P̃n(x) = 1+
∑n

k=1 q(k)εkx
k will have no roots in (0, 1] because

the constant term 1 dominates the sum of the absolute values of all other terms.
However, writing q(x) = γ

∏m
j=1(x− ρj) with γ, ρj ∈ R, we can express P̃n as

P̃n = γ

[ m∏
j=1

Dρj

]
Pn,

where Dρf = (x d
dx − ρ)f = xρ+1 d

dx (x−ρf).
By the Rolle theorem, each application of Dρ can diminish the number of roots

of a function f on the interval (0, 1] by at most 1. Since after m such applications
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the polynomial Pn loses all its roots on that interval, we conclude that its initial
number of roots r satisfied r ≤ m.

Now, to construct the polynomial q of low degree with the desired property, for
ℓ ∈ N, consider the normalized Dirichlet kernel

1
2ℓ+ 1

[
1 + 2

ℓ∑
k=1

cos(ky)
]

= 1
2ℓ+ 1

sin(ℓ+ 1
2 )y

sin y
2

.

It can be written as q0(cos y), where q0 is a polynomial of degree ℓ having ℓ roots
on [−1, 1]. We have q0(1) = 1 and |q0(t)| ≤ 1

2ℓ+1

√
2

1−t for t ∈ [−1, 1). Now put
q1(t) = q0(1 − 2t

n ). Then q1 is also of degree ℓ, still has all its roots real, q1(0) = 1,
and |q1(k)| ≤ 1

2ℓ+1
√

n
k for k = 1, . . . , n. Taking ℓ = ⌈

√
n ⌉, we conclude that

q1(k) ≤ 1
2

√
k

for k = 1, . . . , n. But then for every integer power v ≥ 4, we have
n∑

k=1
|q1(k)|v ≤ 2−v

∞∑
k=1

1
k2 ≤ 21−v,

so q = qv
1 with some v = v(A) will satisfy the desired property and have the degree

m = v(A)⌈
√
n ⌉, yielding the claimed bound for r.
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[2] P. Borwein and T. Erdélyi, The Lp version of Newman’s inequality for lacunary polynomials,
Proc. Amer. Math. Soc. 124 no. 1 (1996), 101–109. DOI MR Zbl
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