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THE NEWMAN ALGORITHM FOR CONSTRUCTING
POLYNOMIALS WITH RESTRICTED COEFFICIENTS
AND MANY REAL ROOTS

MARKUS JACOB AND FEDOR NAZAROV

ABSTRACT. Under certain natural sufficient conditions on the sequence of uni-
formly bounded closed sets Ej C R of admissible coefficients, we construct a
polynomial P,(z) = 1+ ZZ:1 exzk, e, € Ej, with at least c\/n distinct
roots in [0, 1], which matches the classical upper bound up to the value of the
constant ¢ > 0. Our sufficient conditions cover the Littlewood (Ey = {—1,1})
and Newman (E, = {0,(—1)*}) polynomials and are also necessary for the
existence of such polynomials with arbitrarily many roots in the case when
the sequence Ey, is periodic.
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2. INTRODUCTION

Consider a sequence £ of uniformly bounded closed sets E1, Fa, ..., Eg,... CR.
The uniform boundedness condition means that there exists A € (0, +00) such that
E, C[—A,A] for all k € N. Let P = P(&) be the set of all polynomials of the form

n
Pn(x) = 1—|—Z€k$k, er € Fy..
k=1

What is the maximal number r of distinct roots a polynomial P, € P of a given
degree n can have in [0,1] or, equivalently, for a given r € N, what is the lowest
possible degree n of a polynomial P, € P with at least r distinct roots in [0, 1]?
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The now classical result is that the inequality
r < C(A)vn (2.1)

always holds with some C'(A4) € (0,400) depending on A only. One can find this
estimate, for instance, in [3], which goes back to 1999. For the reader’s convenience,
we also present a proof in the appendix.

The question then becomes if (or when) this bound is asymptotically sharp for
large n up to the value of the numerical constant C'(A). As far as we know, in this
form it has not been previously answered even for such natural and well-known
families as Littlewood polynomials (E; = {—1,1}) and Newman polynomiakﬂ
(Ex = {0,(=1)¥}). In both cases the best published lower bounds for r seem
to be polylogarithmic in terms of n. Some more substantial progress has been
made for the polynomials with integer coefficients of height 1 (E, = {—1,0,1}). In
this case it was shown in [4] that 7 > en'/%. The interested reader can find more
related results and the general overview of the history of the question in [3].

To motivate our next definition, let us consider one simple obstacle that prevents
polynomials in P(£) from having many roots in [0, 1] regardless of their degree.
Suppose that the sequence Ej is M-periodic (Egxyn = FEj for all k € N) and
224:1 max Ej < 0. Then we can choose real numbers ¢, > max Ey, (k=1,..., M)
with 22/121 ¢ = 0 and, for n = M 4+ m, 0 < m < M, represent any polynomial
P, €P as

Py(z) =1+ %;Afw) +Q(x) + R(x),

where P(x) = Zﬁ/lzl e, Q(x) = Yi_yar41 €xx" and R(x) has non-positive co-

efficients. Note now that P(1) = 0, so there is a polynomial P of degree at most
M — 1 such that P(z) = (1 — z)P(x). Denoting S(z) = ZkM:Bl x* we obtain

S(z)Py(z) = S(z) + P(z) — 2™ P(2) + S(2)Q(z) + S(z)R(z).

Hence, a coefficient in the expansion of S(z)P,(x) can be positive only if the
corresponding coefficient in the expansion of S(z) + P(z) — 2™ P(z) 4+ S(z)Q(x)
is positive as well. However, the latter polynomial can have non-zero coefficients
only at the powers k € [0, M — 1] U [¢(M + 1, (£ + 2)M — 2]. Thus, the coefficient
sequence of S(x)P,(x) can have at most 3M sign changes, and, therefore, by the
Descartes rule of signs, we have r < 3M as well. Essentially the same argument
with the same conclusion applies to the case Zi\il min Ey > 0.

Thus, for M-periodic sequences &, the necessary condition for the possibility to
have arbitrarily many roots in [0, 1] for some polynomial P, € P(€) is

M M
Zmin Ep, <0 and ZmaxEk > 0. (2.2)
k=1 k=1

1The standard definition of the Newman polynomials restricts the coefficients to the set {0,1}
but then the question about roots should be asked on [—1,0), so we took the liberty to change
the variable to —z to place this family into our general framework.
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Since we want to deal with not necessarily periodic sequences &, we generalize (2.2))
as follows.

Definition. We call a sequence £ of uniformly bounded closed sets Fy C R bal-
anced if there exist M € N, a > 0 such that for every n > 0, one has

M M
E min B, < —a and E max FE, 1, > a.
k=1 k=1

Note that for periodic sequences the condition of being balanced is equivalent
to and that the sequences £ corresponding to the Littlewood and Newman
polynomial families are balanced with parameters M = 2 and a = 1, say.

Our main result is the following.

Theorem. If a sequence £ of uniformly bounded closed sets E, C [—A,A] is
balanced with parameters M, a, then for every r € N, there exists a polynomial
P, € P(&) of degree n < C(A,a, M)r? that has at least r distinct roots in [0, 1].
Moreover, this polynomial can be obtained by an explicit algorithm with running
time polynomialﬂ mr.

The rest of the paper is organized as follows. In Section [3] we present the
classical Jensen bound on the possible smallness of polynomials from P on the
interval I(a) = [1 — 2,1 — o] with a € (0, 3). In Section 4] we show how it can
be used to force many roots on that interval and reduce the problem to building
a power series with restricted coefficients converging to 0 at finitely many given
points. In Section |5, we present the Newman Decomposition Lemma (compare
with the argument in [2, Section 3, pp. 103-105]), which serves as the main tool
for all subsequent constructions. Section [f] reduces the construction of the power
series from Section [ to the investigation of a certain one-dimensional controlled
dynamical system. Section [7] is devoted to the analysis of this system and the
appropriate control choice. It completes the formal existence proof. Section [§]
discusses the corresponding algorithm, its running time, and some details of its
implementation. The Appendix contains the proof of the upper bound .

3. THE JENSEN ESTIMATE

Lemma 1. Let a € (0, %) and let £ be a uniformly bounded sequence of closed sets

E, C [—A, A]. Then for every P, € P(£), we have
/ log_ |P,(z)|dz < C(A),
I(a)

where I(a) = [1 — 2,1 — o and log_ z = max(0, —log z).

2The running time bound proved in this paper is 5(r5), where the tilde over O means that
we ignore factors logarithmic in r.

Rev. Un. Mat. Argentina, Vol. 68, No. 2 (2025)
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Proof. Consider the polynomal P,(z) in the domain Q = (3 + 2D) \ [1 — 2a, 1],
where D = {z : |z| < 1} is the unit disk. Denote by w the harmonic measure on
0N associated with 0. We obtain

0:10g|Pn(0)|§/ log|Pn|doJ:/ log+|Pn|dw—/ log_ |P,|dw. (3.1)
o9 o9 ro)

Everywhere in the unit disk, we have the estimate

- 1
< k< —_—
|P.(2)| <1+ A E [z|]" < maux(l,A)1

= lEl

1 4
I=[z] = [1—2|*"

Also, on the boundary 02, we have Indeed, on [1 — 2a, 1], we can

write
L1
T—fe] 1=z 7 [1—2*
while on the circle £ + 2T, we have |z — $|> = 2, ie., 3]z = 2Rz — 1 =0, or
=2 =201 = |2*) = 2(1 — [2[)(1 + |2]) < 4(1 - |z]), (3.2)

which is equivalent to the claimed inequality.

Thus
4 1,A
/ 10g+|Pn|dw§/ log+%’2)dw(z)
o9 o9 11— 2|

4 1
= / log %’QA) dw(z) < log[4max(1, A)]
90 11— 2|

4 1,A) . . . L .
because z — log % is a non-negative harmonic function in €2, so the integral

of its boundary values with respect to w does not exceed its value at 0. Hence, by

(3-1),
/ log_ | P,| dw < log[4 max(1, A)]
a0

as well.
It remains to show that dw(z) > ¢|dz| on I(«) with some absolute ¢ > 0. To
this end, we first apply the conformal mapping ¢ = {(z) = —i zz;i, which maps 2
3
to the upper half-plane with a vertical slit from 0 to ih with h = 3% Note that
3

C(0) =3i, C(1-2a)=ih, (j(l—a):ih’ziéfa, ¢(1) = 0.
3
Also,
4 3
Al = ——=_|dz| > 2|d

on I(a). Now apply the second conformal mapping & = £(¢) = /(% + h?, which
(with an appropriate choice of the branch of the square root) maps the upper

half-plane with the slit [0, k] to the upper half-plane. Then

§(3i) =ivV9—h?, £([0,ih]) = [=h, R},
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and

<
&+ ]

on [ih/,ih]. Finally, the harmonic measure on the line R with respect to the point

V9 — h? is just

hl
dé]| = dc| = |

1 V9-h

P NGy
e )

1 — h?
|d¢| = — ———1d¢|
T 9
on [—h,h].
Bringing all these estimates together and observing that each point ¢ on the slit
splits into two points £ on R, we obtain

RCEIEE

d —|d
wiz) 2 T T gl
. 20 2n’ §—2a 2

for z € I(«). It remains to note that h = T 5a < land 5 = - > £ for
a € (0,3), so we can take ¢ = 1 ¥823 — 9—\/3, say, and finally get

/ log_ | Py ()| dz < 2% log[4 max(1, A)]

og_ |Pp(x)| dx < — log[4 max(1, A)].
I(a) \/i

Of course, we by no means pretend that this bound is sharp. O

4. FORCING ROOTS

To ensure that P, has many roots in [0, 1], we will use the following elementary
lemma.

Lemma 2. Let I be an interval and let f : I — R be a continuous function on I.
Split I into s — 1 equal subintervals 1. If ﬁ fI log_ |f| < B and ﬁ“} f| <e 2P
J J

for each j, then f has at least 551 roots on I.

s—1
2

Proof. Since T}\ J;log_ |f| < B, we can conclude that for at least
one has ﬁ flj log_ | f| < 28. But for each such I;, we have

1/ 1 1 . 1
L —/1og|f| > exp ——/1og,|f| >
1] J, 151 J, |51 J, |11

so f has to change sign on I;. O

intervals I,

[

J

We shall apply Lemma [2[ to the function f(x) = ¥~ P,(x) with some suitably
chosen L > 0, the value s = 2r, and the interval I(a) = [1 —2a,1 —a]. In this case
we shall have by the Jensen estimate (Lemma |1)

1 C(A) 1

—_— 1 < —2+1Ll =
()| Jr(a) og— |f = @ + 1 2
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Let now x1 < 9 < -+ < x4 be the endpoints of the s — 1 intervals of equal length
tiling I(a). Then

/ f _ xL—l
[zj,@j41] [zj,@j41]

1+ Zzskxkl dr = xLQn(x)|ij+l,
k=1

where
o 1 " €k k
Thus to force r roots of P, on I(a), i 111 suffice to ensure that |Qn(z;)| <

Bforall j=1,...,5=2r.

2(571)
To this end, we shall construct an infinite series
— + 7 €k € Ek:a
such that Q(z;) =0 for all j =1,...,s. Truncating it at k = n, we will then get
= ex] = A k A _
)] < < —C l-—a)f < I e
Q (%)'*k;lLJrk k:er;rlL+k( @) S a@Tn”

Bringing all these observations and estimates together, we see that P,, will have at
least r roots on I(c) C [0,1] if Q(z;) =0 for j =1,...,s and n satisfies

a(L +n) a C(4) 1
s 2 Ll NS
A Ty 7 { o 8T o, (41)

Below we will prove the following result.

na + log

Proposition. For every M € N, A;a > 0, there exists n € (0, %) and Lo > 0 such
that if

e a sequence of closed sets Ey, C [—A, A] is balanced with parameters M, a,
e seNandxy,...,z; €(0,1) satisfy [[;_,z; > 1—n,
e L > max(Lyo, %),

then there exists a power series

fE7 EkGE}m

™~ \

AN

satisfying Q(z;) =0 forall j=1,...,s

We then can take s = 2r and o = 5L. In this case, for any x; € I(«), we shall
have H‘;Zl z; > 1—n, so choosing L = max(Lyg, %), we will be able to apply the
proposition to establish the existence of the power series Q(x) we need. On the
other hand, it is easy to see that, for this choice of parameters, the inequality
will, indeed, be satisfied for n = Cr? with sufficiently large C > 0 depending on
A, a, M only. Hence the proof of our theorem will be complete once the proposition
is established.
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5. NEWMAN’S DECOMPOSITION LEMMA

Lemma 3. For every § > 0, there exists n = n(8) € (0, %) such that for every
s € N and every x1,...,2s € (0,1) with H;Zl xj > 1 —mn, there exist v, € R,
k=0,1,..., satisfying > pey |vk| < & and such that

xj_l —-1= Zyk,ukx? (5.1)
k=0

forallj=1,....s, where p=1— 1.
Proof. Fix ¢ = £(0) € N sufficiently large and define

S

1—pz; {+1 1
B(z)= [T ——F2 gy =1l L
oy g (pe = 2) ¢ ¢
For £k =0,1,..., put
dz
Cr = ﬁB(Z)GZ(Z)Zk%,
where, as usual, T = {z : |z| = 1} is the unit circle traversed counterclockwise.

Note that

1 dz

kK
E ‘= ¢ B(2)G .
kzock'u i 7{, (2) é(z)l—usz%ri

and the integrand on the right hand side has no poles outside the unit disk because
1—pz;z in the denominator cancels with the same factor in the numerator of B(z).

Hence, the right hand side evaluates to the residue of the integrand at oo, which is
1

pnx; "
NJext we shall find a summable majorant C}, for ¢;. To this end, we will shift the
contour to I' = £ + 2T. Note that the factor ——“%% - maps T to —~T and the
373 nx;(pw;—z) n;
circle 1 + 3T with diameter [0,1] to the circle with diameter [—ﬁ, ﬁ] The
J J
image of I is squeezed in between, so

S

|B(2)] < Hl (M;)Q <7 _1n)4 <6

for every z € I as long as 7 € (0, %) Now put

d
C=6 [ 1)1

and notice that C}, depends neither on 7, nor on the choice of x;.
Observe also that Gy has a root of multiplicity 2 at 1, so |G(2)| < |z — 1|2
on I' with some 7, € (0,+00). Thus

o0

— 112 1dz| B2 d

E CkSSW/‘Z | Idz] < 12%/M=16w.
rl—|z| m r T

k=0
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On the other hand, since B(z) is analytic outside the unit disk, B(oo) = 1, and

|B(z)| = szl #i < =z n)2 when z € T, we have

dz dz 1
[ -1PE = [1pepld 1< Lo m1m0

as 7 — 0, i.e., B converges to 1 in L*(T) as n — 0. Hence, for every fixed
k=0,1,..., we have

041
— k=0
Sk 4% dZ 1 ‘
C — Ge =947 k=1¢;
0 otherwise.

Setting vp = —pco — 1, v = —pcg for k = 1,2,..., we conclude that (5.1) holds
and also Y 7 [vg| = 2 as n — 0 by the dominated convergence theorem. It
remains to choose ¢ > % and to notice that ¢, and, thereby, v, are real because

B(2)G(2) = B(2)Ge(2). O

SN

6. TRAP Ty 4

For z1,...,zs € (0,1), introduce the notation
o}
wg=|: |, ke Z.
2k

S

Then we are looking for a sequence €5 € Ey, such that the series %wo—i—zzozl Le—fkwk
converges to 0 in R®. Note that since all z; € (0,1) and |ex| < A for all k, the series
always converges, so it will be enough to ensure that some subsequence of partial

sums tends to 0. Let S = diag[xl_l,..., x;1] be the linear operator satisfying
Swy, = wy_1 for all k € Z.
Define

W(n)=(L+n)S"

1 - Ek

TU0 T
k=1

Then W(0) = wg, and the values W (n) satisfy the controlled recurrence

L+n+1
L+n

where, from now on, we will think of the mapping R* 5 W +— %SW € R?
as an unstable time-dependent dynamical system (with n playing the role of time)
and of the sequence ¢, € F,, as a control that we can choose to try to stabilize it.

Our goal will be to build a bounded trap T" C R® such that W(0) = wg € T
and if W(n) € T for some n > 0, then we can ensure by an appropriate choice
of €nt1y- -y Entm that W(n +m) € T for some m > 1 again. If such a trap is

Wn+1)= SW(n) + ent1wo, (6.1)
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constructed, then we shall have W(n) € T or, equivalently,

1 "L e 1
— € ST,
Lw0+’;L+kwk L+n

for infinitely many n. But ﬁS_”T shrinks to 0 as n — oo, so the desired

convergence to 0 will be established.

To this end, fix § > 0 to be chosen later and take n = 7(5) € (0, 1) given by the
Newman Decomposition Lemma (Lemma [3)). Then for any choice of x1,...,x5 €
(0,1) satisfying H;Zl xj > 1 —mn, we have the decomposition

w_q = wo + Z vipFwy,  with Z || <6, (6.2)
k=0 k=0

where, as before, =1 — 1.

We shall be interested in the representations

)
W(TL) = ¢nw0 + Z An,kﬂkwka ¢n7 /\n,k cR.

k=1
Since W (0) = wo, we can set g = 1, A9, = 0for k =1,2,.... Using the recurrence
(6.1) and the Newman decomposition (6.2)) of w_; = Swy, we see that we can put
L+n+1
1l)nle = Li_"_n[wn + vothy + ,u)‘n,l] + Ent1 (63)
and
L+n+1
An = ——|ui, nVk|. 6.4
1k T1n (1A k41 + Ynvi] (6.4)

Now put Uy = >, ||, k= 0,1,..., and fix a big A > 0. Assume that L is chosen
so that %,u <1(L> % will suffice for this). Assume also that |\, x| < AUy for
all k = 1,2,... and that |[¢,| < puA. Note that these inequalities hold for n = 0,
provided that A > %, say. Then

L+n+1
Mprr ] < 22T TN, n
[Ant1,k] < o [ A g1 ] + [0 |[va]]
L+1 L+1
< 7 [tAUg 41 + pA|vi|] = TNAUk < AU

again.

Thus, we shall not lose control over |\, ;| before we encounter t,, with |i,| >
uA. Our task now is to show that if A = A(A,a, M) is chosen large enough and
6 =0(A,a, M) is chosen small enough (in this order), then we can keep |i),,| under
uA for all n by choosing our control ¢, in an appropriate way.

From the technical standpoint, it becomes just a question about the controlled
one-dimensional dynamics of ,, given by . It will suffice to show that there
exists U € [1,uA] such that if |¢,] < U, then also for some m € N, we have

Rev. Un. Mat. Argentina, Vol. 68, No. 2 (2025)



754 MARKUS JACOB AND FEDOR NAZAROV

[Vntm| < U while [¥nt1], [Ynt2ls .-y |[Untm—1] < pA (but not necessarily < ).
Then the set

T = T\I/,A = {’IZ}’LUO + ZAk/Lkwk . |17Z)| S \IJ7 ‘)\k| S AUk}

k=1
will be our desired trap. Note that all entries of all vectors in T" do not exceed
U+ ASY o, ph =+ % in absolute value, so T is, indeed, bounded.

7. ONE-DIMENSIONAL CONTROLLED DYNAMICS

Let us see first how fast 1, can grow in principle regardless of the choice of the
controls &,. We have
Vi1 = Yo + B + €y,
where
1 L+n+1

An = n
[An] L—|—n¢ * L+n

(Votn + pAn,1)

L+1
L
= T+ B, < (i +5)A

as long as |¢,| < pA. We also have |e,41| < A.
Thus, if we start with |[¢),] < ¥ < pA and run into trouble after m steps (i.e.,
have |, ], [Unt1l, - -+ [Vnem—1] < pA but |¢n40m| > pA), we must have

1
< phht (IvolpA + pAUY)

1
m {(L—&-d)A—&-A] > puA — U,
If we now choose ¥ = % =3MA+1 and %,(5 < ﬁ, we shall have

2 1
A—TU>ZA—-A=T
. =3%73

and
1 2 1 v
- < = =
<L+5>A+A 9M3\I/+ 3M\I} U
so m > M. Thus, starting with |[¢,| < ¥, we shall be safe with our values of
Yn+1s- .-, Yntar for any choice of the controls. The choice we will make is the one

pushing v,,11 towards 0 as hard as possible. More precisely, we will define

{min En+1a wn + An Z 07
En4+1 =

7.1
max Epy1, ¥n + A, <O0. ( )

With this control, two things may happen.

One possibility is that for some m € {1,..., M}, there is at least one sign change
in the sequence V1 m—1, Yntm—1 + Antm—1, Yntm- In this case, we have

1 v
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so we have returned to our trap 7' and may start counting all over.

The other possibility is that all the numbers ¥y, ym—1+ Apim_1, m=1,..., M,
and Yy 4m, m = 0,..., M, are of the same sign and we have €,,4,, = min E,, |, if
this sign is positive or €, = max E,,, if it is negative all the way from 1 to M.
This case requires a bit more careful alalysis. Suppose that the sign is positive
and €54y, = min Ey, 4, for m = 1,..., M. Then, using the condition that our
sequence & of sets is balanced with parameters M, a, we get

M M
. 1
q/;n+M:¢n+ZAn+m_1+ZmlnEn+m§\I/+M(L+5>A—a.

m=1 m=1

Thus, to be certain that 1,13 < ¥ in this case, we need to impose yet another
condition on L and §, which is

l6<a_ a
L'~ 2MA  6M(3MA+1)

The same condition will suffice for the case when the sign is negative and we choose
all maxima.
The final choice of the parameters will then be the following:

9M’ 6M(3MA+1)

M(BMA+1
n =n(9), Lozmax<6(3+),9M), LZmax(L07s).
n

a

1
A=3(3MA+1), U=3MA+1, 5:mm< a),

It is easy to see that A, W,d,7n, Ly depend on A, a, M only, so the proof of the
proposition is complete.

8. THE ALGORITHM

It should be clear now how to build an algorithm for finding a polynomial P, €
P(€) with a given number r of roots in principle. Given 7, one should choose
82r+1,nxr27Lxr,nxlandseta:%,,uzl—g. Then one needs
to choose the points z1,...,zs € I(a) and compute vy, vy, ..., V, (the rest of the
coefficients in the Newman decomposition are never used in the determination of
€1,...,En). Finally, one can initialize ¢ = 1, Ay = 0 and update their values
according to and choosing the coefficient sequence ¢, as in .

The total running time is the time of the pre-computation of v4 plus the time of
the determination of the coefficients. Since each coefficient determination requires
updating an array of length n, we get n steps that take < n elementary arithmetic
operations each. So it looks like we need about n? =< r* operations for this part.
However, as it is usual with the real number computations, the question of the
propagation of the rounding errors arises.

In theory, we are just running the exponentially unstable dynamics

_L+m+1

W(O) = Wo, W(m + 1) = WSW(TTL) + Em+1Wo
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and trying to stabilize it by choosing an appropriate control sequence &,,. A small
issue, however, is that we determine &,, not from the vectors W(m) directly, but
rather from their representations

W(m) = Ypmwo + Z )\m7kpkwk,
k=1

so the adequate computation model seems to be given by

W(m) = dmwo + mevkukwk,

k=1
~ L+m+1 ~ ~ ~ ~
'l/)m—‘rl = ﬁ(wm + Vme + //)\m.,l) + Em+1 + O(T)v (81)
~ L+m+1, ~ ~
A1k = ——— (BAm k1 + Ymk) + O(7),

L+m
where 7 is the fixed point rounding error and &,, are determined as in (7.1]) but
using the (erratic) values ¢, and A, ; instead of the true ¢, and A, i, i.e,

R min B, 41, %(wm + vo¥m + N)‘m,l) > 0;
Em+1 = I 1, ~ ~
max Fp, 11, %W)m + Vot + ptAm.1) < 0.
It is not hard to see that if we allow ourselves some extra leeway in the inequalities
for A, ¥, L and ¢, then we will not need very high precision to stabilize the
erratic dynamics. Indeed, as far as A, are concerned, we just notice that if
[Am.k| <64+ AUy and 9, < pA, we can write
~ L+1
Am+1k| < T[/L@ + AUk+1) + pAvg] + O(7)

L+1
|:Z/J(5+ O(T):| + AU, <6+ AUy,

IA

as long as £ us < ¢ and O(7) is too small to span the difference. Recalling
that 4 = 1 — 7 and taking L > %7 we see that the precision 7 =< r~! is already

enough to keep the values Xm’k bounded by 2§ as long as |1Zm| remains bounded by
A, Stabilizing the one-dimensional dynamics of @m then imposes an even weaker
restriction on 7. We just need to add an extra O(7) term to the estimate for |A,,]
in all previous calculations, where we can afford even a constant leeway.

However, the real issue is not the stabilization of the erratic dynamics per se,
but ensuring that the true dynamics with the controls &,, based on the erratic
computations results in not too large vectors W(m). More precisely, we need to
show that for the sequence of vectors defined by

L+m+1
L+m
we still have a decent bound on the size of W (n). To this end, we will just compare
W(m) to W(m), for which we know a good bound from the bounds on 1, and

W(O) = Wo, W(m + ]-) = SW(m) + €m+1w0,
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ka. Taking (8.1)) into account, we see that the values ﬁ/\(m) satisfy
_ —~ _ L+-m+1 —~ 1

W) =wo, W+ 1) = == 8W(m) + Eniawo + 7 0(),

where the last term is obtained by summing up the rounding errors in wm 41 and
)‘m+1 k, 1.e., evaluating the sum > -, puFOo(T).

Thus,
= L+m+1 = 1
whence, by induction on m,
m—1
— 1—2q)~m*!
W) = ()] < 0(0) Y IS1F < 120t =20
k=0

because ||S|| < - as all z; > 1 — 2a. Recalling that 4 =1—2 and o = 3L, we
see that

[W(n) = W(n)| < 0(s7)e?™*0(7).

Since s < r and n =< 72, we conclude that to keep the difference W (n) — /V[7(n)
bounded in this computational model, we need to choose 7 = e~¢" with sufficiently
large C.

Now we can address the question of the required precision of the computation
of i and vg. It should be clear at this point that, for our model to be justified,
their values must be computed with the same precision 7. That is not a big deal
for p, which is given by a simple arithmetic formula in terms of our parameters,
but the computation of the vy, which are obtained by contour integration, requires
a separate discussion. Recall that the v, are obtained by elementary expressions
from

dz
o= § BEIGHF 55
T 271
so it will suffice to compute ¢; with precision 7 for £k = 0,...,n. To this end, we

suggest just to discretize the integral to the sum

1 Nl

-+ B(e2™3/NYq, (2713/ N g2mid(k+1)/N
N 2 BETR) (e M )e

7=0

for sufficiently large N > n + 1 that is a power of 2 and to use the fast Fourier
transform. Note that, for 0 < k < N — 1, this sum, even if computed exactly, is
not the true value of ¢ but ¢ + cxyn + Cxran + .. .. Fortunately, since all poles
of B(z) and Gy(z) lie reasonably deep inside the unit disk, |cx| decays fairly fast
as k — oo. To get a simple yet sufﬁcient bound for our purposes, we will just

shift the contour to uT with u =1 — % and observe that for each Blaschke factor
l—px;z

i, =2y We have

3
1 —pzjuz| <|1—u|+|1—pxjzl < 5\1 — px;zl,
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while
1
|z —uz| 2 |paj — z[ = 1 —ul 2 g|pz; - 2|,
S
so |B(uz)| < 3°|B( )| <o 17)

max.er |Ge(uz)| < vt max.er |Ge(2)]. At last, ub = (1 — )k < e~ % . Thus,
C'r)

——— when z € T. As to Gy, we just use the estimate

to make the sum cpin + crron + ... negligible (i.e., less than 7 = e~“"), we can

take any N for which 3% % is substantially smaller than e=¢"

to choose N = 2 too.

Thus, the cost of the pre-computation is about sN + Nlog N = r? elementary
arithmetic operations, which is r times less than the cost of computing all the
coefficients &,,, m = 1,...,n. The total running time is then about r* times the
time needed for an elementary arithmetic operation on Cr-digit numbers, which is
O(r). This gives the O(r%) claimed in the statement of the theorem.

Finally, a few words about the practical implementation, if somebody feels a
desire to try it. While the orders of magnitude in the above discussion are all cor-
rect, the numerical constants given by our rigorous proofs are certainly suboptimal,
so the best way to choose an appropriate value for 1 and ¢ is by trial and error.
This won’t waste too much time because if the blow-up in our dynamical system
occurs at all, it usually happens rather fast and can be seen after about r iterations
already. Also, while the theory guarantees r roots for s = 2r, in practice s =r+ 1
may already be enough.

, which forces us

APPENDIX

In this section we shall prove the classical bound r < C(A)+/n for the number r
of the roots of a polynomial P,(z) =1+ >_;'_, exa® with |e] < A on the interval
[0,1]. This bound holds for the number of roots counted with multiplicity, so
no assumption that the roots are distinct will be required in the proof. Since
P,(0) =1, it is enough to get an estimate for the number of roots of P, in (0,1]. We
shall follow the exposition in [I, Theorem 5, p. 55] with some minor modifications.

Suppose that one can construct a polynomial g of degree m with real roots such
that

n

q(0>:17 Z|q |<*

Then the polynomial P, (z) = 1+>"1_, q(k)ega® will have no roots in (0, 1] because
the constant term 1 dominates the sum of the absolute values of all other terms.
However, writing g(z) =~ H;n:l(x — p;) with v, p; € R, we can express P, as

= ’Y|:HDpj:|Pna
j=1

where D, f = (x5 — p)f = a#™ (@7 f).
By the Rolle theorem, each apphcatlon of D, can diminish the number of roots
of a function f on the interval (0,1] by at most 1. Since after m such applications
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the polynomial P, loses all its roots on that interval, we conclude that its initial
number of roots r satisfied » < m.

Now, to construct the polynomial g of low degree with the desired property, for
¢ € N, consider the normalized Dirichlet kernel

1 1 sin(0+ 1)y
I 2 2
2e+1{ * ZCOS ky} 2011 sing

It can be written as go(cosy), where qo is a polynomial of degree ¢ having ¢ roots

n [—1,1]. We have go(1) = 1 and |go(t)] < 2é+1’/1i—t for t € [-1,1). Now put

q1(t) = qo(1 — 2). Then ¢y is also of degree ¢, still has all its roots real, ¢1(0) = 1,

and lg1 (k)| < T}H\/% for k = 1,...,n. Taking { = [\/n], we conclude that
q1(k) < %= for k =1,...,n. But then for every integer power v > 4, we have

2Vk
Z\lh \v<2vz =2

so ¢ = q7 with some v = U(A) will satisfy the de51red property and have the degree
= v(A)[v/n], yielding the claimed bound for r.
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