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SUPERPOWER GRAPHS OF FINITE ABELIAN GROUPS

AJAY KUMAR, LAVANYA SELVAGANESH, AND T. TAMIZH CHELVAM

ABSTRACT. For a finite group G, the superpower graph S(G) is a simple
undirected graph with vertex set GG, where two distinct vertices are adjacent
if and only if the order of one divides that of the other. The aim of this paper
is to provide tight bounds for the vertex connectivity of S(G), together with
some structural properties such as maximal domination sets, Hamiltonicity,
and its variations for superpower graphs of finite abelian groups. The paper
concludes with some open problems.

1. INTRODUCTION

The investigation of graphs associated with algebraic structures is very im-
portant, as such graphs enrich both algebra and graph theory. Moreover, these
graphs have practical applications and are related to automata theory, as shown in
[12, [13] 14}, 11]. The study of graphical representations of semigroups and groups
has become an active research topic in the recent couple of decades, prompting
many interesting results and questions. In this context, some of the most stud-
ied graphs are the Cayley graph [5, [I7, 20], commuting graph [19] and power
graph [T}, [15] of finite groups. The power graph P(G) of a group G is an undirected
graph with vertex set GG, where two distinct vertices are adjacent if and only if
one can be written as a power of the other in G. The notion of the superpower
graph S(G) of a finite group G is a very recent development in the domain of
graphs from groups, and it was first introduced in 2018 by Hamzeh and Ashrafi [9]
(they refer to it as the order supergraph S(G) of G). In fact, for a finite group G,
the superpower graph S(G) is a simple undirected graph with vertex set G, where
two distinct vertices a,b € G are adjacent if and only if either o(a) | o(b) or
o(b) | o(a); here o(a) denotes the order of a € G. The aim of their work was
to exhibit a relationship between P(G) and S(G), together with some structural
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properties of the superpower graph. Further, they posed the question of determin-
ing the structure of G when |7(G)| = a(S(G)), where 7(G) is the set of all orders
of elements in G, and a(S(G)) is the independence number of S(G). Following
this, Ma and Su [I8] studied the independence number a(S(G)) and answered the
question. Hamzeh and Ashrafi [7] computed the automorphism group and the full
automorphism group of the superpower graph of certain finite groups. They also
proved that the automorphism group of this graph could be written as a combi-
nation of Cartesian and wreath products of some symmetric groups. In [§], the
same authors computed the characteristic polynomial of these graphs for certain
finite groups. Consequently, the spectrum and Laplacian spectrum of these graphs
for dihedral, semi-dihedral, cyclic, and dicyclic groups were computed. In [I0], the
authors investigated the Hamiltonicity, Eulerian property, and 2-connectedness of
the superpower graph S(G) of G. Recall that PSL(2,p) and PGL(2,p) are cen-
tral quotient groups of the special linear and general linear groups, respectively.
Asboei and Salehi [2] proved that the groups PSL(2,p), PGL(2,p), and central
simple groups uniquely determine their superpower graphs. That is, for any fi-
nite group G, if S(G) = S(PSL(2,p)) or S(PGL(2,p)), then G = PSL(2,p) or
PGL(2,p), respectively. They also proved that if M is a central simple group and
S(M) = S(G), then G = M.

2. PRELIMINARIES

In this section, we present some definitions and results from group theory as
well as graph theory. We use standard definitions and results from [6] for group
theory and [3] for graph theory, which we restate here along with our notation
whenever necessary. Throughout this paper, by a group G we mean a finite group
of order n with identity e. The relation ~ on G, defined by a ~ b if and only if
a and b have the same order, is an equivalence relation on G. For each positive
divisor d of n, let wqa(G) = {z € G : o(x) = d}, and for any subset X C G, let
X* =X \w1(G) = X\ {e}. Let n(G) = {aq,...,ar} denote the set of all orders of
elements in G. As usual, Z,, = {0,1,...,n — 1} denotes the cyclic group of order n.
For a positive integer n, Euler’s phi function ¢(n) denotes the number of integers
1 < k < n that are relatively prime to n. We always take the prime factorization

of a positive integer n > 2 as n = p"'pg? -+ p¥m, and it is assumed that m > 1,
p1 < -+ < pmy are primes, and a; € N for all 1 < i < m. For a positive integer

n,7(n) denotes the number of divisors of n.

By a graph I we mean a finite, undirected, simple graph with a nonempty vertex
set V and edge set E. A vertex of I' is called a dominant vertex if it is adjacent
to every other vertex of I'. A graph I is said to be dominatable if it contains at
least one dominant vertex, and dom(I') denotes the set of all dominant vertices
inI". A connected component of T" is a maximal connected subgraph of I'. A subset
T C V of I is called a separating set of I if the number of connected components of
the graph T'\ T is greater than the number of connected components of I'. A sep-
arating set T is called a minimal separating set if any proper subset 7T of T is not
a separating set of I'. A minimal separating set of minimum cardinality is called a
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minimum separating set and the cardinality of this minimum separating set is called
the vertex connectivity of a connected graph I" and is denoted by «(I"). If a graph "
has a path P (or a cycle C) which contains all the vertices of T', then P (or C) is
called Hamiltonian path (or Hamiltonian cycle) of T'. A graph I'" with a Hamilton-
ian cycle is called a Hamiltonian graph. A graph T is called 1-Hamiltonian if it is
Hamiltonian and all of its 1-vertex-deleted subgraphs are Hamiltonian. A graph I’
is called Hamiltonian connected if any two vertices of I can be joined by a Hamil-
tonian path. A graph I' on n vertices is called pancyclic if, for every ¢, 3 < £ < n,
there exists a cycle of length ¢ in I'. If a graph T' has the property that, for any
two distinct vertices u and v of G, there exists a path of length ¢ for all possible ¢
for d(u,v) < ¢ <mn, then T is called pan-connected. A connected graph T is called
k-connected if after removing any k — 1 vertices from it, the remaining graph is
connected. If a graph I" has a closed walk W which traverses every edge of I" ex-
actly once, then W is called an Fuler circuit and IT" is called an Fulerian graph. If
I' is a p-vertex labeled graph and I'y,...,I', are connected graphs, then the I'-join
of Fl,Fg, .o ,Fp is denoted by AF[Fl,FQ, sy Fp]

Let us recall certain results for our future use.

Theorem 2.1 ([6, Theorem 8.2]). Let G1 and G2 be two finite cyclic groups. Then
their external direct product G1 X Gy is cyclic if and only if orders o(G1) and o(G2)
are relatively prime. O

Theorem 2.2 ([0, Theorem 11.1]). Ewvery finite abelian group is the direct product
of cyclic groups of prime-power order. Moreover, the number of terms in the direct

product and the orders of the cyclic groups are uniquely determined by the group.
O

The above theorem gives that every finite abelian group G satisfies G = Zprln X
ZP;Q X + -+ X Zyem , where the cyclic groups Zp;n , Zp;Q s+ vy Lyem are uniquely de-
termined by G. The following is a known characterization of finite abelian groups
in terms of their elementary divisors.

Theorem 2.3 ([6, Chapter 11]). Let G be a finite abelian group of order n =
pripg? - pSm  where each p; is prime and o; € N. Then G = Ly, XLy X+ -+ X L,
where ny > ng > -+ > ny, nj | n; for each j > i, 1 < j < k, and o(G) =
niNg -« - N O

In rest of the paper, we use the above characterization for finite abelian groups.

Lemma 2.4 ([0, Chapter 11]). Let G be a finite abelian group having an element x
of mazimum nontrivial order. Then o(g) divides o(z) for all g € G. O

Theorem 2.5 ([9, Theorem 2.3]). Let G be a finite group. The superpower graph
S(G) is complete if and only if G is a p-group. O

In view of the above theorem, we consider only finite abelian non-p groups for
the rest of the paper, unless stated otherwise.
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3. DOMINANT SET OF S(G)

It is a well-known fact that dominant vertices play an important role in the
characterization of graphs. In fact, if a graph contains a dominant vertex, then it
is connected and its diameter is at most two. Thus, it is interesting to find out the
set of all dominant vertices in S(G). In the following theorem, we find the number
of dominant vertices in S(G) for any finite abelian non-p group G.

Theorem 3.1. Let G be a finite abelian non-p group of order n, and let dom(S(G))
be the set of all dominant vertices in the superpower graph S(G) of G. Then
|[dom(S(QG))| = tep(n1) + 1, where ny is the largest order of an element in G and t
is the number of cyclic subgroups of G of order n;.

Proof. Let G be a finite abelian group of order n with identity e and let n; be
the largest order of an element in G. Let ny = pf ! ng -.pPm where f; € N and
p1 < -+ < pp, are distinct primes. For a divisor d of n, let wg = {x € G : o(x) = d}.
From Lemmal[2.4] vertices in wy, (G)U{e} are adjacent to every other vertex of S(G)
and hence wy, (G) U {e} C dom(S(G)). On the other hand, let z ¢ dom(S(G)).
This gives that 1 < o(z) < n1 < o(G). By Lemma o(x) | n1. Let y be an
element in G such that o(y) = pf for some 1 < i < m such that pf does not
divide ny. It is trivial that such an element y exists always and x is not adjacent
to y. So x is not an element of wy, (G) U {e}. Hence dom(S(G) C wy, (G) U {e}
and 8o wy, (G) Uwi(G) = dom(S(G)). Also, |wn, (G) Uwi(G)| = td(ny) + 1,
where ¢t is the number of distinct cyclic subgroups of order ny in G. Therefore
|dom(S(G))| = to(n1) + 1. O

As mentioned in the proof of Theorem S(G) always contains a dominant
vertex other than identity and hence we have the following corollary.

Corollary 3.2. For any finite abelian group G, the superpower graph S(G*) is
dominatable. (]

In view of the above theorem, we take Hg to be the subgraph of S(G) induced
by the subset G = G \ (wy,, U {e}) of G.

4. HAMILTONICITY OF S(G)

In [4], it was proved that the power graph P(G) of any cyclic group G of order
at least three is Hamiltonian (see [4, Theorem 4.13]). In [9], it was proved that
S(G) = P(G) if and only if G is a finite cyclic group. Thus S(G) is Hamiltonian
for any cyclic group of order at least three. A natural question now arises: can we
extend this result to finite abelian groups? Unfortunately, the same question has
received a negative answer in the case of P(G). For example, P(Zy X Zs3) is not
Hamiltonian. However, we can extend this result to S(G) and the same is proved
in the following theorem. For any divisor d of o(G), the subgraph H,; induced by
the vertex subset wy(G) = { € G : o(x) = d} is a clique in S(G).
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Theorem 4.1. For any finite abelian group G of order greater than two, the su-
perpower graph S(G) is Hamiltonian.

Proof. Let G be a finite abelian group of order n and let n; be the largest order
of an element in G. Let {dy,da,...,ds,n1} be the divisors of n such that 1 <
dp <---<dy <np <n. By Lemma d; | nq for all i (1 <i < ¢). Note that
¢ < 7(ny). For any divisor d of n, the subgraph H; induced by the vertex subset
wq(G) = {z € G : o(x) = d} is a clique in S(G). Now let us trace a Hamiltonian
cycle in S(G) as follows.

Start from the vertex v; € dom(S(G)). From vy, go to any vertex of the clique
H,, and traverse all vertices of Hy,. Now we have a Hamilton path containing all
the vertices in Hg, U{v1}. Note that the terminal vertex of this Hamiltonian path
is adjacent to a vertex ve € dom(S(G)) and ve # v1. From vy, go to any vertex of
the clique Hg, and traverse all vertices of Hg,. Now the terminating vertex of the
resulting Hamiltonian path is adjacent to a vertex vertex vs € dom(S(G)) and v3 ¢
{v1,v2}. Repeat this until all the cliques Hy, (G), 1 < i < £ are covered. Since £ <
7(n1) < ¢(n1) < |dom(S(G))|, there are enough vertices in dom(S(G)) to connect
all disjoint cliques. Finally, complete the cycle by joining all the uncovered vertices
of dom(S(G)) by path to v1. The entire process of identifying a Hamiltonian cycle

is given in Figure (]
Ha,(a) ‘ . Ha,(c)
dom(S(@G))

P N
// 7 N \\
s N
s N
Hd2(G) ‘ ‘ Hdeil(G)

FIGUrRE 1. Hamiltonian cycle in S(G).

Remark 4.2. In [I0], it was conjectured that, for any finite simple non-abelian
group G, S(G) is non-Hamiltonian. In view of this, we observe that S(G) may or
may not be Hamiltonian for any non-abelian group G. For instance, we have shown
that the superpower graph S(Da,,) of the dihedral group Da,, is Hamiltonian if and
only if n is an even integer [16], whereas S(Ty,) of dicyclic group is Hamiltonian
for any integer n (one can prove this along similar lines to the proof for S(Dsgy,)).

Recall that a graph T is called I-Hamiltonian if it is Hamiltonian and all of its
1-vertex-deleted subgraphs are Hamiltonian. Now, we prove that the superpower
graph S(G) is 1-Hamiltonian.
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Corollary 4.3. For any finite abelian group G with o(G) > 4, the superpower
graph S(G) is 1-Hamiltonian.

Proof. Let ny be the largest order of an element in G. For g € G, if o(g) =d < ng
(d # 1,2), then g is a vertex in the clique induced by wqy for the divisor d of o(G).
Further, H; \ {g} remains as a clique and so it has a spanning path whose initial
and terminal vertices can be joined by two different vertices of dom(S(G)). Now,
the proof can be completed as proved in Theorem

If o(g) = 2, then Hs is a single vertex and removing this vertex does not discon-
nect the graph, as the vertices of S(G)) which are joined through this vertex can
also be joined through vertices of dom(S(G)).

If o(g) = ny or 1, then g € dom(S(G)). As seen in the proof of Theorem
there are enough vertices in dom(S(G)) \ {g} to connect all the disjoint cliques
corresponding to all proper divisors of o(G). Hence the required Hamiltonian cycle
can be obtained as in Theorem Thus S(G) is 1-Hamiltonian. O

Corollary 4.4. For any finite abelian group G of order at least three, the super-
power graph S(G) is pancyclic.

Proof. Let o(G) =n > 3 and let ny be the largest order of an element in G. Let
{dy,ds,...,ds} be the set of all nontrivial divisors of ny with dy < ds < --- < dp <
n1 < n. By Theorem the subgraph induced by dom(S(G)) is a clique of size
té(n1) + 1, and so we have cycles of lengths from 3 to t¢(n1) + 1 in S(G). Also,
from Theorem we know that S(G) contains a cycle of length n.

For any g1 € V(S(G)), by Corollary S(G) \ {g1} is Hamiltonian and thus
S(G) contains a cycle of length n — 1. Note that, in the proof of Corollary
we see that as long as we keep choosing a vertex g € wg, C V(G) \ dom(S(Q)),
obtaining a cycle containing remaining vertices is immediate. Choose g2 € wqy, (G),
if it exists; otherwise choose {g2} € wq, (G) for some nontrivial divisor dy # d; of n,
and we immediately get that S(G) \ {g1, 92} is Hamiltonian. So S(G) contains a
cycle of length n — 2. Recursively deleting the vertices of wg, for each i, 1 <i </,
we can get cycles of length n — 2 to t¢(n1) + 2. Thus S(G) contains cycles of
length ¢ for 3 < ¢ < n and hence S(G) is pancyclic. O

It is not always true that there exists a Hamiltonian path between any pair
of distinct vertices in a graph, even if it is Hamiltonian. However, this holds for
the superpower graph S(G) of any finite abelian group G, and hence we have the
following result.

Corollary 4.5. For any finite abelian group G, the superpower graph S(G) is
Hamiltonian connected.

Proof. Let u,v € V(S(G)) be two distinct vertices in S(G). Without loss of gener-
ality, one can take u = v1 € wy, (G) and v = v9 € wy,(G), where d; and ds are two
nontrivial distinct divisors of o(G). Start from the vertex v; and traverse along
the spanning path in Hy, (G), and join it with a vertex vz of dom(S(G)). From vg
go to any vertex of Hy,(G) and repeat the process until all vertices of the cliques
Hg,(G)Udom(S(Q)), 3 < i < £, belong to the path such that v, € dom(S(G))
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is the last vertex of this path. Now, join vy to a vertex z # va of Hy,(g). Upon
completing the path from x to vy in Hg,(G), we obtain the required Hamiltonian
path between v and v in S(G). O

Corollary 4.6. For any finite abelian group G, the superpower graph S(G) is
pan-connected.

Proof. Let u,v € V(S(G)) be two distinct vertices in S(G). For every k, d(u,v) <
k < n, a path of length k£ can be obtained by inserting the required number of
vertices from Hgy, Udom(S(G)), 1 <4 < ¢, in such a way that any two vertices of
cliques Hg,, Hq; can be joined through a vertex of dom(S(G)). This implies that
S(G) is pan-connected. O

Now a natural question arises: what will be the effect on the Hamiltonicity of the
graph S(G) if we remove all dominant vertices from it? In the following theorem,
we give the answer to this question.

Theorem 4.7. Let G be a finite abelian non-p group and let ny be the largest order
of an element in G. Let wy, (G) = {x € G : o(x) = n1}. Then the subgraph He of
the superpower graph S(G) induced by G = G\ ({e} Uwy, (G)) is Hamiltonian if
and only if ny is not the product of two distinct primes.

Proof. Assume that Hg is Hamiltonian. If n; = pq for distinct primes p and ¢,
then Hz = H, U H, is disconnected, as there is no path connecting the vertices of
H, and H,, a contradiction.

Conversely, assume that n; is not the product of two distinct primes. Since
G is not a p-group, we have n; = pﬂlpﬁQ- -pPm where f; € N, m > 2, and
p1 < -+ < pn, are distinct primes. By the assumption on nq, it can be seen that
when m = 2 either 5; > 1 or 82 > 1. Now the largest order of an element in the
set G =G\ ({e} Uwy,, (Q)) will be ot (=7, say).

Let wy, (G) = {b1,...,bs} be the set of all elements of order 7. Let {dy,...,d;}

be the set of all nontr1v1a1 divisors of 77 with 1 < dy < dy < -+ < dy < Ty.
Let wy (G) be the set of all elements of order d; in G and let Hy be the sub-
graph 1nduced by wg. (G). For each i,1 < i </, let Pu. = (i, Ugy ..., x;) be the

Hamiltonian path in H . Then the induced subgraph H of H5 on the vertices of
Uir<ico wg- U wny is Hamlltoman since

C = (b1, Pu; b2, Pr, ba,- o be, Priberas - b)

is a Hamiltonian cycle in H.

It remains for us to include the remaining vertices in Hg\ H into C appropriately
to obtain a Hamiltonian cycle in Hg. Based on the condition on 71, we observe
that the only possible subsets of different orders in G'\ (U,<;<, wg, (G) Uwg, (G))
are of the form w,, s (G) and wpflr(é)’ where r = d; for some i, 1 < i < (. If
cliques H o H, s 7 exist in Hg \ H, then the spanning paths P(v{,u}) of Hye
and P(vj, uJ) for 1 < j < € of Hp, 14, are inserted into the spanning path of Hy-
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and Hz- respectively, as shown in Figure That is, the required Hamiltonian
J

cycle CHE in Hg is given by (b1, P1,ba, Ps,...,b¢, Pi,bey,. .., bs), where P; =

(vj, %, P(v},uf), g, Puj, zj)) (if it exists). O

FIGURE 2. Hamiltonian cycle in Hg.

Recall that that S(Z,) = P(Z,) for every positive integer n. Since the dom-
inant vertices of both S(Z,) and P(Z,) are the only generators of Z,, we have
dom(S(Z,)) = dom(P(Z,)). Let P(Z,) be the induced power graph of P(Z,) by
removing all the dominant vertices from it. This observation gives us the following

interesting property of P(Z,,) from Hz—.

Corollary 4.8. For any positive integer n, Hz— = P(Zy,) is Hamiltonian if and
only if n is not the product of two distinct primes.

In [I0], it was proved that S(G) is Eulerian if and only if G is a group of odd
order. What will be the effect on the order of G if we remove all dominant vertices
from S(G)? The following theorem gives the answer to this question

Theorem 4.9. Let G be a finite abelian non-p group. For any proper divisor d
of n, let wg ={x € G:o(x) =d}. Let ny be the largest order of an element in the
group G and G = G\ ({e} Uwy, (G)). Then the subgraph He of the superpower

graph S(G) induced by G is Eulerian if and only if n is an even integer.
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Proof. Suppose Hg is Eulerian and o(G) = n. Let n(G) = {a1,az,...,a,} be the
set of all orders of elements in G. For any x € G with o(x) = a;,

degy_(7) = wa, (@) + Y we,(G)—1. (4.1)
il fzﬁéa_;l i

For each 4, 1 < i < k, the number of elements of order a; is t;¢(a;), where t; is
the number of cyclic subgroups of order a; in G. It is also a well-known fact that
¢(k) is odd if and only if k € {1,2}. Clearly, degHE(x) is even if and only if the
expression in is even, which happens if and only if G has an odd number
of involution elements. Thus n is even. Conversely, assume that n is even. By
Cauchy’s theorem, G, and hence G, must have an odd number of involutions, and
these are odd numbers. From the expression in , the degree of any element in
He is even. Thus He is Eulerian. U

5. VERTEX CONNECTIVITY OF S(G)

It is well known that any graph containing a Hamiltonian cycle is 2-connected,
and hence S(G) is 2-connected for any finite abelian group. Hence we have the
following observation from Corollary

Corollary 5.1. Let G be a finite abelian non-p group such that maximum order of
an element is not the product of two primes. Then He is 2-connected.

In the following theorem, we provide a lower bound for the vertex connectivity
k(S(G)) of S(G) for any finite abelian group G, which extends [I0, Theorem 2.7]
and [9, Theorem 2.11].

Theorem 5.2. Let G be a finite abelian group of order n, let nqy be the largest
order of elements in G, and let t be the number of cyclic subgroups of order n;
in G. Then k(S(G)) > tp(n1) + 1. Furthermore, k(S(G)) = tp(n1) + 1 if and only
if G = Lyt x Lyt or G =7yt X Zg?, where p and q are distinct primes and rq1 > 1
and s1, 82 > 0 are integers.

Proof. Let G be a finite abelian group of order n, let n; be the largest order of
elements in G, and let ¢ be the number of cyclic subgroups of order n; in GG. Note
that one needs to remove at least all the vertices of dom(S(G)) = té(n1) + 1 to
disconnect S(G). Thus, by Theorem we have k(S(G)) > tp(ny) + 1.

Next we prove the second part of the statement. Assume that G' = Zj! x Z;!
or G = Zpl x 732, where p and ¢ are distinct primes and 71 > 1 and s1,s3 >
0 are integers. Note that the largest order of elements in G is n;y = pq. Let
G = G\ ({e} Uw,, (G)). Since there is no path between elements of orders p
and ¢, the subgraph Hg induced by G = G\ ({e} Uwy, (G)) is disconnected. Thus
R(S(G)) = to(n) + 1.

Conversely, assume that £(S(G)) = té(n1)+ 1. Let G be a group such that ny is
the largest order of elements in G. If ny # pq, by Theorem@ He is Hamiltonian,
which implies that £(S(G)) > t¢(n1)+1. Note that the only possible abelian groups
having two prime divisors p and ¢ for o(G) and with largest order as ny = pq are
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Lty X Lt or Lyt X Zg?, where p and ¢ are distinct primes and 71 > 1 and s1,52 > 0
are integers. O

Let G be a finite abelian group of order n = p{"'p5? -+ p¥m, m > 2. Assume
that G =2 Z,,, X Zp, X -+ X Zp,,, where n;, for 1 <i < k, are elementary divisors
of G. As stated in Theorem nj | n; for each j > i, n; € N, 1 < i,j < F,
and ning---ni = n. Let ny :pflpgz-npfs7 1<s<k B >01<1i<sbe
the prime decomposition of the largest order n;. Let ap = pfS, a, = Z—;, and let
m(G) = {ap, a1, az,...,ar} be the set of all orders of elements in G.

In the following theorem, we find an upper bound for the vertex connectivity of
S(G) using the notation defined above.

Theorem 5.3. Let G be a finite abelian group of order n = p*p3? - -pim, m > 2.

Letn, = pflpgz .- pBs be the largest order of elements in G. Let ag = p5, a1 = Z—;,

and let 7(G) = {ao, a1, ..., a.} be the set of all orders of elements in G. Then there
exists a minimal separating set T of S(G) with

IT| = Z ti ¢(as),
ailay or aila;,

a;#a1

where t; is the number of cyclic subgroups of order a; in G.

Proof. Consider the set
T ={we,(G):a; | a1 oray|a; for2<i<r}

Since there is no path between vertices of the cliques wg,(G) and wq, (G), T is a
separating set of S(G). Let A and B be two connected components of S(G)\ T
such that wg, (G) € V(A) and w,, (G) C V(B). Now, we prove that 7" is a minimal
separating set by showing that, for any proper subset TT of T, there is a path
connecting u € wg,(G) and v € w,, (G) in S(G) \ TT. Without loss of generality,
one can take TT = T'\ {z} for x € w,, (G). Since either a, | a; or a; | a,, there
exists a path Pj(u,z) connecting u and z in A U w,.(G). Similarly, for y € B
with o(y) = a,p%, there exists a path Py(y,v) connecting y to v in B. Now,
P = (P (u,),z,y, P2(y,v)) is a path connecting u and v in S(G)\ TT. Thus, T is
a minimal separating set of S(G). If ¢; is the number of cyclic subgroups of order a;
in G for 2 <i <r, then

IT| = Z t; p(aq). O

ailay or aila;,
a;Fay

Remark 5.4. The bound obtained in Theorem [5.3] is tight. For three distinct
primes p,q,r with p < ¢ < r, we shall show that the bound is tight for groups
G €{Zpg, Lpgr, Lpgr X Ly X Ly X -+ X Ly }.
When G 2 Zyq, by Theorem [5.2] we have that x(S(G)) = ¢(1) + ¢(pq) = |T.
Let G = Zpgr X Zy X -+ X Zy. By Theorem Hz is connected. If T is a
minimum separating set of Hg, then T = TUdom(S(G)) is a minimum separating
set of S(G). Hence to get the vertex connectivity of S(G), it is enough to find the
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vertex connectivity of Hg. Notice that the equivalence classes of G with respect to
~ are precisely w,(GQ), we(G), wr(G), wpe(G), wpr(G), wer(G), and each of these
equivalence classes is a clique in Hg. Thus

Hg = Ag[Ku, @) Kw, (@) Ko, () Ky (@) Kwy, (G)s Ky, (6)]5
as given in Figure

FIGURE 3. Connectivity in Hg.

It is clear that deletion of any one of the cliques in Hg does not disconnect
Hg. However, deletion of any two nonadjacent cliques in Hg can disconnect it.
This implies that a minimal separating set of Hg is precisely the union of any two
nonadjacent cliques. Also, we have the inequalities |w,(G)| < |we(G)| < |w,(G)]
and |wpq(G)| < |wpr(G)| < |wgr (G)]. Heuristically, we first add the smallest clique,
namely w,(G), to the minimum separating set T. We then find that the next best
possible nonadjacent clique having minimum cardinality is w,(G). Thus, T =
wy(G) Uwy(G) is a minimum separating set of Hg, implying that 7' = w,(G) U
Wq(G) U wper (@) Uwi(G) is a minimum separating set of S(G) with cardinality
o(par) + ¢(p) + &(q) + ¢(1).

A similar proof holds when G = Zj,.

Corollary 5.5. Let G be an finite abelian non-p group of order n. If the largest
order ny of elements in G is not the product of two distinct primes, then

top(n1) +3 < w(S(G)) < [T,

where t denotes the number of cyclic subgroups of order ny in G and T is the
minimal separating set of S(G) as obtained in Theorem ,

Proof. Note that the required lower bound follows from Corollary [5.1] and Theo-
rem [5.2] while the upper bound follows from Theorem [5.3] O
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6. OPEN PROBLEMS

We conclude this article with some open problems.

Problem 6.1. Characterize all non-abelian groups G for which S(G) is Hamilton-

ian.

Problem 6.2. Obtain a tight bound for the edge connectivity of S(G), where G
is a finite abelian group.
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