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SUPERPOWER GRAPHS OF FINITE ABELIAN GROUPS

AJAY KUMAR, LAVANYA SELVAGANESH, AND T. TAMIZH CHELVAM

Abstract. For a finite group G, the superpower graph S(G) is a simple
undirected graph with vertex set G, where two distinct vertices are adjacent
if and only if the order of one divides that of the other. The aim of this paper
is to provide tight bounds for the vertex connectivity of S(G), together with
some structural properties such as maximal domination sets, Hamiltonicity,
and its variations for superpower graphs of finite abelian groups. The paper
concludes with some open problems.

1. Introduction

The investigation of graphs associated with algebraic structures is very im-
portant, as such graphs enrich both algebra and graph theory. Moreover, these
graphs have practical applications and are related to automata theory, as shown in
[12, 13, 14, 11]. The study of graphical representations of semigroups and groups
has become an active research topic in the recent couple of decades, prompting
many interesting results and questions. In this context, some of the most stud-
ied graphs are the Cayley graph [5, 17, 20], commuting graph [19] and power
graph [1, 15] of finite groups. The power graph P (G) of a group G is an undirected
graph with vertex set G, where two distinct vertices are adjacent if and only if
one can be written as a power of the other in G. The notion of the superpower
graph S(G) of a finite group G is a very recent development in the domain of
graphs from groups, and it was first introduced in 2018 by Hamzeh and Ashrafi [9]
(they refer to it as the order supergraph S(G) of G). In fact, for a finite group G,
the superpower graph S(G) is a simple undirected graph with vertex set G, where
two distinct vertices a, b ∈ G are adjacent if and only if either o(a) | o(b) or
o(b) | o(a); here o(a) denotes the order of a ∈ G. The aim of their work was
to exhibit a relationship between P (G) and S(G), together with some structural
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properties of the superpower graph. Further, they posed the question of determin-
ing the structure of G when |π(G)| = α(S(G)), where π(G) is the set of all orders
of elements in G, and α(S(G)) is the independence number of S(G). Following
this, Ma and Su [18] studied the independence number α(S(G)) and answered the
question. Hamzeh and Ashrafi [7] computed the automorphism group and the full
automorphism group of the superpower graph of certain finite groups. They also
proved that the automorphism group of this graph could be written as a combi-
nation of Cartesian and wreath products of some symmetric groups. In [8], the
same authors computed the characteristic polynomial of these graphs for certain
finite groups. Consequently, the spectrum and Laplacian spectrum of these graphs
for dihedral, semi-dihedral, cyclic, and dicyclic groups were computed. In [10], the
authors investigated the Hamiltonicity, Eulerian property, and 2-connectedness of
the superpower graph S(G) of G. Recall that PSL(2, p) and PGL(2, p) are cen-
tral quotient groups of the special linear and general linear groups, respectively.
Asboei and Salehi [2] proved that the groups PSL(2, p), PGL(2, p), and central
simple groups uniquely determine their superpower graphs. That is, for any fi-
nite group G, if S(G) ∼= S(PSL(2, p)) or S(PGL(2, p)), then G ∼= PSL(2, p) or
PGL(2, p), respectively. They also proved that if M is a central simple group and
S(M) ∼= S(G), then G ∼= M .

2. Preliminaries

In this section, we present some definitions and results from group theory as
well as graph theory. We use standard definitions and results from [6] for group
theory and [3] for graph theory, which we restate here along with our notation
whenever necessary. Throughout this paper, by a group G we mean a finite group
of order n with identity e. The relation ∼ on G, defined by a ∼ b if and only if
a and b have the same order, is an equivalence relation on G. For each positive
divisor d of n, let wd(G) = {x ∈ G : o(x) = d}, and for any subset X ⊆ G, let
X∗ = X \ w1(G) = X \ {e}. Let π(G) = {a1, . . . , ak} denote the set of all orders of
elements in G. As usual, Zn = {0, 1, . . . , n − 1} denotes the cyclic group of order n.
For a positive integer n, Euler’s phi function ϕ(n) denotes the number of integers
1 ≤ k ≤ n that are relatively prime to n. We always take the prime factorization
of a positive integer n ≥ 2 as n = pα1

1 pα2
2 · · · pαm

m , and it is assumed that m ≥ 1,
p1 < · · · < pm are primes, and αi ∈ N for all 1 ≤ i ≤ m. For a positive integer
n, τ(n) denotes the number of divisors of n.

By a graph Γ we mean a finite, undirected, simple graph with a nonempty vertex
set V and edge set E. A vertex of Γ is called a dominant vertex if it is adjacent
to every other vertex of Γ. A graph Γ is said to be dominatable if it contains at
least one dominant vertex, and dom(Γ) denotes the set of all dominant vertices
in Γ. A connected component of Γ is a maximal connected subgraph of Γ. A subset
T ⊂ V of Γ is called a separating set of Γ if the number of connected components of
the graph Γ \ T is greater than the number of connected components of Γ. A sep-
arating set T is called a minimal separating set if any proper subset T † of T is not
a separating set of Γ. A minimal separating set of minimum cardinality is called a
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minimum separating set and the cardinality of this minimum separating set is called
the vertex connectivity of a connected graph Γ and is denoted by κ(Γ). If a graph Γ
has a path P (or a cycle C) which contains all the vertices of Γ, then P (or C) is
called Hamiltonian path (or Hamiltonian cycle) of Γ. A graph Γ with a Hamilton-
ian cycle is called a Hamiltonian graph. A graph Γ is called 1-Hamiltonian if it is
Hamiltonian and all of its 1-vertex-deleted subgraphs are Hamiltonian. A graph Γ
is called Hamiltonian connected if any two vertices of Γ can be joined by a Hamil-
tonian path. A graph Γ on n vertices is called pancyclic if, for every ℓ, 3 ≤ ℓ ≤ n,
there exists a cycle of length ℓ in Γ. If a graph Γ has the property that, for any
two distinct vertices u and v of G, there exists a path of length ℓ for all possible ℓ
for d(u, v) ≤ ℓ ≤ n, then Γ is called pan-connected. A connected graph Γ is called
k-connected if after removing any k − 1 vertices from it, the remaining graph is
connected. If a graph Γ has a closed walk W which traverses every edge of Γ ex-
actly once, then W is called an Euler circuit and Γ is called an Eulerian graph. If
Γ is a p-vertex labeled graph and Γ1, . . . , Γp are connected graphs, then the Γ-join
of Γ1, Γ2, . . . , Γp is denoted by ∆Γ[Γ1, Γ2, . . . , Γp].

Let us recall certain results for our future use.

Theorem 2.1 ([6, Theorem 8.2]). Let G1 and G2 be two finite cyclic groups. Then
their external direct product G1 ×G2 is cyclic if and only if orders o(G1) and o(G2)
are relatively prime. □

Theorem 2.2 ([6, Theorem 11.1]). Every finite abelian group is the direct product
of cyclic groups of prime-power order. Moreover, the number of terms in the direct
product and the orders of the cyclic groups are uniquely determined by the group.

□

The above theorem gives that every finite abelian group G satisfies G ∼= Zp
α1
1

×
Zp

α2
2

× · · · × Zpαm
m

, where the cyclic groups Zp
α1
1

,Zp
α2
2

, . . . ,Zpαm
m

are uniquely de-
termined by G. The following is a known characterization of finite abelian groups
in terms of their elementary divisors.

Theorem 2.3 ([6, Chapter 11]). Let G be a finite abelian group of order n =
pα1

1 pα2
2 · · · pαm

m , where each pi is prime and αi ∈ N. Then G ∼= Zn1 ×Zn2 ×· · ·×Znk
,

where n1 ≥ n2 ≥ · · · ≥ nk, nj | ni for each j ≥ i, 1 ≤ j ≤ k, and o(G) =
n1n2 · · · nk. □

In rest of the paper, we use the above characterization for finite abelian groups.

Lemma 2.4 ([6, Chapter 11]). Let G be a finite abelian group having an element x
of maximum nontrivial order. Then o(g) divides o(x) for all g ∈ G. □

Theorem 2.5 ([9, Theorem 2.3]). Let G be a finite group. The superpower graph
S(G) is complete if and only if G is a p-group. □

In view of the above theorem, we consider only finite abelian non-p groups for
the rest of the paper, unless stated otherwise.
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3. Dominant set of S(G)

It is a well-known fact that dominant vertices play an important role in the
characterization of graphs. In fact, if a graph contains a dominant vertex, then it
is connected and its diameter is at most two. Thus, it is interesting to find out the
set of all dominant vertices in S(G). In the following theorem, we find the number
of dominant vertices in S(G) for any finite abelian non-p group G.

Theorem 3.1. Let G be a finite abelian non-p group of order n, and let dom(S(G))
be the set of all dominant vertices in the superpower graph S(G) of G. Then
|dom(S(G))| = tϕ(n1) + 1, where n1 is the largest order of an element in G and t
is the number of cyclic subgroups of G of order n1.

Proof. Let G be a finite abelian group of order n with identity e and let n1 be
the largest order of an element in G. Let n1 = pβ1

1 pβ2
2 · · · pβm

m , where βi ∈ N and
p1 < · · · < pm are distinct primes. For a divisor d of n, let wd = {x ∈ G : o(x) = d}.
From Lemma 2.4, vertices in wn1(G)∪{e} are adjacent to every other vertex of S(G)
and hence wn1(G) ∪ {e} ⊆ dom(S(G)). On the other hand, let x ̸∈ dom(S(G)).
This gives that 1 < o(x) < n1 ≤ o(G). By Lemma 2.4, o(x) | n1. Let y be an
element in G such that o(y) = pβi

i for some 1 ≤ i ≤ m such that pβi

i does not
divide n1. It is trivial that such an element y exists always and x is not adjacent
to y. So x is not an element of wn1(G) ∪ {e}. Hence dom(S(G) ⊆ wn1(G) ∪ {e}
and so wn1(G) ∪ w1(G) = dom(S(G)). Also, |wn1(G) ∪ w1(G)| = tϕ(n1) + 1,
where t is the number of distinct cyclic subgroups of order n1 in G. Therefore
|dom(S(G))| = tϕ(n1) + 1. □

As mentioned in the proof of Theorem 3.1, S(G) always contains a dominant
vertex other than identity and hence we have the following corollary.

Corollary 3.2. For any finite abelian group G, the superpower graph S(G∗) is
dominatable. □

In view of the above theorem, we take HG to be the subgraph of S(G) induced
by the subset G = G \ (wn1 ∪ {e}) of G.

4. Hamiltonicity of S(G)

In [4], it was proved that the power graph P (G) of any cyclic group G of order
at least three is Hamiltonian (see [4, Theorem 4.13]). In [9], it was proved that
S(G) = P (G) if and only if G is a finite cyclic group. Thus S(G) is Hamiltonian
for any cyclic group of order at least three. A natural question now arises: can we
extend this result to finite abelian groups? Unfortunately, the same question has
received a negative answer in the case of P (G). For example, P (Z2 × Z2) is not
Hamiltonian. However, we can extend this result to S(G) and the same is proved
in the following theorem. For any divisor d of o(G), the subgraph Hd induced by
the vertex subset wd(G) = {x ∈ G : o(x) = d} is a clique in S(G).
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Theorem 4.1. For any finite abelian group G of order greater than two, the su-
perpower graph S(G) is Hamiltonian.
Proof. Let G be a finite abelian group of order n and let n1 be the largest order
of an element in G. Let {d1, d2, . . . , dℓ, n1} be the divisors of n such that 1 <
d1 < · · · < dℓ < n1 ≤ n. By Lemma 2.4, di | n1 for all i (1 ≤ i ≤ ℓ). Note that
ℓ < τ(n1). For any divisor d of n, the subgraph Hd induced by the vertex subset
wd(G) = {x ∈ G : o(x) = d} is a clique in S(G). Now let us trace a Hamiltonian
cycle in S(G) as follows.

Start from the vertex v1 ∈ dom(S(G)). From v1, go to any vertex of the clique
Hd1 and traverse all vertices of Hd1 . Now we have a Hamilton path containing all
the vertices in Hd1 ∪ {v1}. Note that the terminal vertex of this Hamiltonian path
is adjacent to a vertex v2 ∈ dom(S(G)) and v2 ̸= v1. From v2, go to any vertex of
the clique Hd2 and traverse all vertices of Hd2 . Now the terminating vertex of the
resulting Hamiltonian path is adjacent to a vertex vertex v3 ∈ dom(S(G)) and v3 ̸∈
{v1, v2}. Repeat this until all the cliques Hdi

(G), 1 ≤ i ≤ ℓ are covered. Since ℓ <
τ(n1) ≤ ϕ(n1) < |dom(S(G))|, there are enough vertices in dom(S(G)) to connect
all disjoint cliques. Finally, complete the cycle by joining all the uncovered vertices
of dom(S(G)) by path to v1. The entire process of identifying a Hamiltonian cycle
is given in Figure 1. □

e
vs

v3
v2

v1

f1

fw

b1

by cz

c1

a1

ax

Hdℓ(G)Hd1(G)

Hdℓ−1(G)Hd2(G)

dom(S(G))

Figure 1. Hamiltonian cycle in S(G).

Remark 4.2. In [10], it was conjectured that, for any finite simple non-abelian
group G, S(G) is non-Hamiltonian. In view of this, we observe that S(G) may or
may not be Hamiltonian for any non-abelian group G. For instance, we have shown
that the superpower graph S(D2n) of the dihedral group D2n is Hamiltonian if and
only if n is an even integer [16], whereas S(T4n) of dicyclic group is Hamiltonian
for any integer n (one can prove this along similar lines to the proof for S(D2n)).

Recall that a graph Γ is called 1-Hamiltonian if it is Hamiltonian and all of its
1-vertex-deleted subgraphs are Hamiltonian. Now, we prove that the superpower
graph S(G) is 1-Hamiltonian.
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Corollary 4.3. For any finite abelian group G with o(G) ≥ 4, the superpower
graph S(G) is 1-Hamiltonian.

Proof. Let n1 be the largest order of an element in G. For g ∈ G, if o(g) = d < n1
(d ̸= 1, 2), then g is a vertex in the clique induced by wd for the divisor d of o(G).
Further, Hd \ {g} remains as a clique and so it has a spanning path whose initial
and terminal vertices can be joined by two different vertices of dom(S(G)). Now,
the proof can be completed as proved in Theorem 4.1.

If o(g) = 2, then H2 is a single vertex and removing this vertex does not discon-
nect the graph, as the vertices of S(G)) which are joined through this vertex can
also be joined through vertices of dom(S(G)).

If o(g) = n1 or 1, then g ∈ dom(S(G)). As seen in the proof of Theorem 4.1,
there are enough vertices in dom(S(G)) \ {g} to connect all the disjoint cliques
corresponding to all proper divisors of o(G). Hence the required Hamiltonian cycle
can be obtained as in Theorem 4.1. Thus S(G) is 1-Hamiltonian. □

Corollary 4.4. For any finite abelian group G of order at least three, the super-
power graph S(G) is pancyclic.

Proof. Let o(G) = n ≥ 3 and let n1 be the largest order of an element in G. Let
{d1, d2, . . . , dℓ} be the set of all nontrivial divisors of n1 with d1 < d2 < · · · < dℓ <
n1 ≤ n. By Theorem 3.1, the subgraph induced by dom(S(G)) is a clique of size
tϕ(n1) + 1, and so we have cycles of lengths from 3 to tϕ(n1) + 1 in S(G). Also,
from Theorem 4.1 we know that S(G) contains a cycle of length n.

For any g1 ∈ V (S(G)), by Corollary 4.3, S(G) \ {g1} is Hamiltonian and thus
S(G) contains a cycle of length n − 1. Note that, in the proof of Corollary 4.3,
we see that as long as we keep choosing a vertex g ∈ wd1 ⊂ V (G) \ dom(S(G)),
obtaining a cycle containing remaining vertices is immediate. Choose g2 ∈ wd1(G),
if it exists; otherwise choose {g2} ∈ wd2(G) for some nontrivial divisor d2 ̸= d1 of n,
and we immediately get that S(G) \ {g1, g2} is Hamiltonian. So S(G) contains a
cycle of length n − 2. Recursively deleting the vertices of wdi

for each i, 1 ≤ i ≤ l,
we can get cycles of length n − 2 to tϕ(n1) + 2. Thus S(G) contains cycles of
length ℓ for 3 ≤ ℓ ≤ n and hence S(G) is pancyclic. □

It is not always true that there exists a Hamiltonian path between any pair
of distinct vertices in a graph, even if it is Hamiltonian. However, this holds for
the superpower graph S(G) of any finite abelian group G, and hence we have the
following result.

Corollary 4.5. For any finite abelian group G, the superpower graph S(G) is
Hamiltonian connected.

Proof. Let u, v ∈ V (S(G)) be two distinct vertices in S(G). Without loss of gener-
ality, one can take u = v1 ∈ wd1(G) and v = v2 ∈ wd2(G), where d1 and d2 are two
nontrivial distinct divisors of o(G). Start from the vertex v1 and traverse along
the spanning path in Hd1(G), and join it with a vertex v3 of dom(S(G)). From v3
go to any vertex of Hd3(G) and repeat the process until all vertices of the cliques
Hdi(G) ∪ dom(S(G)), 3 ≤ i ≤ ℓ, belong to the path such that vℓ ∈ dom(S(G))
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is the last vertex of this path. Now, join vℓ to a vertex x ̸= v2 of Hd2(G). Upon
completing the path from x to v2 in Hd2(G), we obtain the required Hamiltonian
path between u and v in S(G). □

Corollary 4.6. For any finite abelian group G, the superpower graph S(G) is
pan-connected.

Proof. Let u, v ∈ V (S(G)) be two distinct vertices in S(G). For every k, d(u, v) ≤
k ≤ n, a path of length k can be obtained by inserting the required number of
vertices from Hdi ∪ dom(S(G)), 1 ≤ i ≤ ℓ, in such a way that any two vertices of
cliques Hdi , Hdj can be joined through a vertex of dom(S(G)). This implies that
S(G) is pan-connected. □

Now a natural question arises: what will be the effect on the Hamiltonicity of the
graph S(G) if we remove all dominant vertices from it? In the following theorem,
we give the answer to this question.

Theorem 4.7. Let G be a finite abelian non-p group and let n1 be the largest order
of an element in G. Let wn1(G) = {x ∈ G : o(x) = n1}. Then the subgraph HG of
the superpower graph S(G) induced by G = G \ ({e} ∪ wn1(G)) is Hamiltonian if
and only if n1 is not the product of two distinct primes.

Proof. Assume that HG is Hamiltonian. If n1 = pq for distinct primes p and q,
then HG = Hp ∪ Hq is disconnected, as there is no path connecting the vertices of
Hp and Hq, a contradiction.

Conversely, assume that n1 is not the product of two distinct primes. Since
G is not a p-group, we have n1 = pβ1

1 pβ2
2 · · · pβm

m , where βi ∈ N, m ≥ 2, and
p1 < · · · < pm are distinct primes. By the assumption on n1, it can be seen that
when m = 2 either β1 > 1 or β2 > 1. Now the largest order of an element in the
set G = G \ ({e} ∪ wn1(G)) will be n1

p1
(= n1, say).

Let wn1(G) = {b1, . . . , bs} be the set of all elements of order n1. Let {d1, . . . , dℓ}
be the set of all nontrivial divisors of n1 with 1 < d1 < d2 < · · · < dℓ < n1.
Let wdi

(G) be the set of all elements of order di in G and let Hdi
be the sub-

graph induced by wdi
(G). For each i, 1 ≤ i ≤ ℓ, let PH

di
= ⟨vi, ui, . . . , xi⟩ be the

Hamiltonian path in Hdi
. Then the induced subgraph H of HG on the vertices of⋃

1≤i≤ℓ wdi
∪ wn1 is Hamiltonian, since

C = ⟨b1, PH
d1

, b2, PH
d2

, b3, . . . , bℓ, PH
dℓ

, bℓ+1, . . . , bs⟩

is a Hamiltonian cycle in H.
It remains for us to include the remaining vertices in HG\H into C appropriately

to obtain a Hamiltonian cycle in HG. Based on the condition on n1, we observe
that the only possible subsets of different orders in G \

(⋃
1≤i≤ℓ wdi

(G) ∪ wn1(G)
)

are of the form wp1β1 (G) and w
p

β1
1 r

(G), where r = di for some i, 1 < i ≤ ℓ. If
cliques H

p
β1
1

, Hp1β1 dj
exist in HG \ H, then the spanning paths P (v′

1, u′
1) of Hp

α1
1

and P (v′
j , u′

j) for 1 < j ≤ ℓ of Hp1α1 dj
are inserted into the spanning path of Hd1
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and Hdj
respectively, as shown in Figure 2. That is, the required Hamiltonian

cycle CH
G

in HG is given by ⟨b1, P1, b2, P2, . . . , bℓ, Pl, bℓ+1, . . . , bs⟩, where Pj =
⟨vj , v′

j , P (v′
j , u′

j), uj , P (uj , xj)⟩ (if it exists). □

bs...
bk+1

b3 · · ·
b2

b1

u′
ℓ

v′
ℓ

v2

x2

vk

xk

v1 H
p

β1
1 dℓ

Hd2

H
p

β1
1

x1

Hdk
u2

Hn1

u1

u′
2

v′
1

H
p

β1
1 d2

u′
1

v′
2

Hd1

Hdℓ

vℓ

uℓ

xℓ

Figure 2. Hamiltonian cycle in HG.

Recall that that S(Zn) = P (Zn) for every positive integer n. Since the dom-
inant vertices of both S(Zn) and P (Zn) are the only generators of Zn, we have
dom(S(Zn)) = dom(P (Zn)). Let P (Zn) be the induced power graph of P (Zn) by
removing all the dominant vertices from it. This observation gives us the following
interesting property of P (Zn) from HZn

.

Corollary 4.8. For any positive integer n, HZn
= P (Zn) is Hamiltonian if and

only if n is not the product of two distinct primes.

In [10], it was proved that S(G) is Eulerian if and only if G is a group of odd
order. What will be the effect on the order of G if we remove all dominant vertices
from S(G)? The following theorem gives the answer to this question

Theorem 4.9. Let G be a finite abelian non-p group. For any proper divisor d
of n, let wd = {x ∈ G : o(x) = d}. Let n1 be the largest order of an element in the
group G and G = G \ ({e} ∪ wn1(G)). Then the subgraph HG of the superpower
graph S(G) induced by G is Eulerian if and only if n is an even integer.
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Proof. Suppose HG is Eulerian and o(G) = n. Let π(G) = {a1, a2, . . . , ar} be the
set of all orders of elements in G. For any x ∈ G with o(x) = ai,

degH
G

(x) = wai(G) +
∑

ai|aj or aj |ai,
ai ̸=aj

waj (G) − 1. (4.1)

For each i, 1 ≤ i ≤ k, the number of elements of order ai is tiϕ(ai), where ti is
the number of cyclic subgroups of order ai in G. It is also a well-known fact that
ϕ(k) is odd if and only if k ∈ {1, 2}. Clearly, degH

G
(x) is even if and only if the

expression in (4.1) is even, which happens if and only if G has an odd number
of involution elements. Thus n is even. Conversely, assume that n is even. By
Cauchy’s theorem, G, and hence G, must have an odd number of involutions, and
these are odd numbers. From the expression in (4.1), the degree of any element in
HG is even. Thus HG is Eulerian. □

5. Vertex connectivity of S(G)

It is well known that any graph containing a Hamiltonian cycle is 2-connected,
and hence S(G) is 2-connected for any finite abelian group. Hence we have the
following observation from Corollary 4.8.

Corollary 5.1. Let G be a finite abelian non-p group such that maximum order of
an element is not the product of two primes. Then HG is 2-connected.

In the following theorem, we provide a lower bound for the vertex connectivity
κ(S(G)) of S(G) for any finite abelian group G, which extends [10, Theorem 2.7]
and [9, Theorem 2.11].

Theorem 5.2. Let G be a finite abelian group of order n, let n1 be the largest
order of elements in G, and let t be the number of cyclic subgroups of order n1
in G. Then κ(S(G)) ≥ tϕ(n1) + 1. Furthermore, κ(S(G)) = tϕ(n1) + 1 if and only
if G ∼= Zr1

pq × Zs1
p or G ∼= Zr1

pq × Zs2
q , where p and q are distinct primes and r1 ≥ 1

and s1, s2 ≥ 0 are integers.

Proof. Let G be a finite abelian group of order n, let n1 be the largest order of
elements in G, and let t be the number of cyclic subgroups of order n1 in G. Note
that one needs to remove at least all the vertices of dom(S(G)) = tϕ(n1) + 1 to
disconnect S(G). Thus, by Theorem 3.1, we have κ(S(G)) ≥ tϕ(n1) + 1.

Next we prove the second part of the statement. Assume that G ∼= Zr1
pq × Zs1

p

or G ∼= Zr1
pq × Zs2

q , where p and q are distinct primes and r1 ≥ 1 and s1, s2 ≥
0 are integers. Note that the largest order of elements in G is n1 = pq. Let
G = G \ ({e} ∪ wn1(G)). Since there is no path between elements of orders p
and q, the subgraph HG induced by G = G \ ({e} ∪ wn1(G)) is disconnected. Thus
κ(S(G)) = tϕ(n1) + 1.

Conversely, assume that κ(S(G)) = tϕ(n1)+1. Let G be a group such that n1 is
the largest order of elements in G. If n1 ̸= pq, by Theorem 4.7, HG is Hamiltonian,
which implies that κ(S(G)) > tϕ(n1)+1. Note that the only possible abelian groups
having two prime divisors p and q for o(G) and with largest order as n1 = pq are
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Zr1
pq ×Zs1

p or Zr1
pq ×Zs2

q , where p and q are distinct primes and r1 ≥ 1 and s1, s2 ≥ 0
are integers. □

Let G be a finite abelian group of order n = pα1
1 pα2

2 · · · pαm
m , m ≥ 2. Assume

that G ∼= Zn1 × Zn2 × · · · × Znk
, where ni, for 1 ≤ i ≤ k, are elementary divisors

of G. As stated in Theorem 2.3, nj | ni for each j ≥ i, ni ∈ N, 1 ≤ i, j ≤ k,
and n1n2 · · · nk = n. Let n1 = pβ1

1 pβ2
2 · · · pβs

s , 1 ≤ s ≤ k, βi ≥ 0, 1 ≤ i ≤ s be
the prime decomposition of the largest order n1. Let a0 = pβs

s , a1 = n1
a0

, and let
π(G) = {a0, a1, a2, . . . , ar} be the set of all orders of elements in G.

In the following theorem, we find an upper bound for the vertex connectivity of
S(G) using the notation defined above.

Theorem 5.3. Let G be a finite abelian group of order n = pα1
1 pα2

2 · · · pαm
m , m ≥ 2.

Let n1 = pβ1
1 pβ2

2 · · · pβs
s be the largest order of elements in G. Let a0 = pβs

s , a1 = n1
a0

,
and let π(G) = {a0, a1, . . . , ar} be the set of all orders of elements in G. Then there
exists a minimal separating set T of S(G) with

|T | =
∑

ai|a1 or a1|ai,
ai ̸=a1

ti ϕ(ai),

where ti is the number of cyclic subgroups of order ai in G.

Proof. Consider the set
T = {wai

(G) : ai | a1 or a1 | ai for 2 ≤ i ≤ r}.

Since there is no path between vertices of the cliques wa0(G) and wa1(G), T is a
separating set of S(G). Let A and B be two connected components of S(G) \ T
such that wa0(G) ⊆ V (A) and wa1(G) ⊆ V (B). Now, we prove that T is a minimal
separating set by showing that, for any proper subset T † of T , there is a path
connecting u ∈ wa0(G) and v ∈ wa1(G) in S(G) \ T †. Without loss of generality,
one can take T † = T \ {x} for x ∈ war (G). Since either ar | a1 or a1 | ar, there
exists a path P1(u, x) connecting u and x in A ∪ wr(G). Similarly, for y ∈ B
with o(y) = arpβs

s , there exists a path P2(y, v) connecting y to v in B. Now,
P = ⟨P1(u, x), x, y, P2(y, v)⟩ is a path connecting u and v in S(G) \ T †. Thus, T is
a minimal separating set of S(G). If ti is the number of cyclic subgroups of order ai

in G for 2 ≤ i ≤ r, then

|T | =
∑

ai|a1 or a1|ai,
ai ̸=a1

ti ϕ(ai). □

Remark 5.4. The bound obtained in Theorem 5.3 is tight. For three distinct
primes p, q, r with p < q < r, we shall show that the bound is tight for groups
G ∈ {Zpq,Zpqr,Zpqr × Zr × Zr × · · · × Zr}.

When G ∼= Zpq, by Theorem 5.2, we have that κ(S(G)) = ϕ(1) + ϕ(pq) = |T |.
Let G ∼= Zpqr × Zr × · · · × Zr. By Theorem 5.2, HG is connected. If T is a

minimum separating set of HG, then T = T ∪ dom(S(G)) is a minimum separating
set of S(G). Hence to get the vertex connectivity of S(G), it is enough to find the
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vertex connectivity of HG. Notice that the equivalence classes of G with respect to
∼ are precisely wp(G), wq(G), wr(G), wpq(G), wpr(G), wqr(G), and each of these
equivalence classes is a clique in HG. Thus

HG = ∆G[Kwp(G), Kwq(G), Kwr(G), Kwpq(G), Kwpr(G), Kwqr(G)],

as given in Figure 3.

wqr(G)

wr(G)

wpr(G)

wp(G)

wpq(G)

wq(G)

Figure 3. Connectivity in HG.

It is clear that deletion of any one of the cliques in HG does not disconnect
HG. However, deletion of any two nonadjacent cliques in HG can disconnect it.
This implies that a minimal separating set of HG is precisely the union of any two
nonadjacent cliques. Also, we have the inequalities |wp(G)| < |wq(G)| < |wr(G)|
and |wpq(G)| < |wpr(G)| < |wqr(G)|. Heuristically, we first add the smallest clique,
namely wp(G), to the minimum separating set T . We then find that the next best
possible nonadjacent clique having minimum cardinality is wq(G). Thus, T =
wp(G) ∪ wq(G) is a minimum separating set of HG, implying that T = wp(G) ∪
wq(G) ∪ wpqr(G) ∪ w1(G) is a minimum separating set of S(G) with cardinality
ϕ(pqr) + ϕ(p) + ϕ(q) + ϕ(1).

A similar proof holds when G ∼= Zpqr.

Corollary 5.5. Let G be an finite abelian non-p group of order n. If the largest
order n1 of elements in G is not the product of two distinct primes, then

tϕ(n1) + 3 ≤ κ(S(G)) ≤ |T |,

where t denotes the number of cyclic subgroups of order n1 in G and T is the
minimal separating set of S(G) as obtained in Theorem 5.3.

Proof. Note that the required lower bound follows from Corollary 5.1 and Theo-
rem 5.2, while the upper bound follows from Theorem 5.3. □
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6. Open problems

We conclude this article with some open problems.
Problem 6.1. Characterize all non-abelian groups G for which S(G) is Hamilton-
ian.
Problem 6.2. Obtain a tight bound for the edge connectivity of S(G), where G
is a finite abelian group.

References
[1] J. Abawajy, A. Kelarev, and M. Chowdhury, Power graphs: a survey, Electron. J. Graph

Theory Appl. (EJGTA) 1 no. 2 (2013), 125–147. DOI MR Zbl

[2] A. K. Asboei and S. S. Salehi, Some results on the main supergraph of finite groups, Algebra
Discrete Math. 30 no. 2 (2020), 172–178. DOI MR Zbl

[3] J. A. Bondy and U. S. R. Murty, Graph theory, Grad. Texts in Math. 244, Springer, New
York, 2008. MR Zbl

[4] I. Chakrabarty, S. Ghosh, and M. K. Sen, Undirected power graphs of semigroups, Semi-
group Forum 78 no. 3 (2009), 410–426. DOI MR Zbl

[5] S. J. Curran and J. A. Gallian, Hamiltonian cycles and paths in Cayley graphs and
digraphs—a survey, Discrete Math. 156 no. 1-3 (1996), 1–18. DOI MR Zbl

[6] J. A. Gallian, Contemporary abstract algebra, fourth ed., Narosa, New Delhi, 1999. Zbl

[7] A. Hamzeh and A. R. Ashrafi, Automorphism groups of supergraphs of the power graph
of a finite group, European J. Combin. 60 (2017), 82–88. DOI MR Zbl

[8] A. Hamzeh and A. R. Ashrafi, Spectrum and L-spectrum of the power graph and its main
supergraph for certain finite groups, Filomat 31 no. 16 (2017), 5323–5334. DOI MR Zbl

[9] A. Hamzeh and A. R. Ashrafi, The order supergraph of the power graph of a finite group,
Turkish J. Math. 42 no. 4 (2018), 1978–1989. DOI MR Zbl

[10] A. Hamzeh and A. R. Ashrafi, Some remarks on the order supergraph of the power graph
of a finite group, Int. Electron. J. Algebra 26 (2019), 1–12. DOI MR Zbl

[11] A. Kelarev, Ring constructions and applications, Series in Algebra 9, World Scientific,
River Edge, NJ, 2002. MR Zbl

[12] A. Kelarev, Graph algebras and automata, Monogr. Textbooks Pure Appl. Math. 257,
Marcel Dekker, New York, 2003. MR Zbl

[13] A. Kelarev, Labelled Cayley graphs and minimal automata, Australas. J. Combin. 30
(2004), 95–101. MR Zbl

[14] A. Kelarev, J. Ryan, and J. Yearwood, Cayley graphs as classifiers for data mining: the
influence of asymmetries, Discrete Math. 309 no. 17 (2009), 5360–5369. DOI MR Zbl

[15] A. Kumar, L. Selvaganesh, P. J. Cameron, and T. Tamizh Chelvam, Recent developments
on the power graph of finite groups—a survey, AKCE Int. J. Graphs Comb. 18 no. 2 (2021),
65–94. DOI MR Zbl

[16] A. Kumar, L. Selvaganesh, and T. Tamizh Chelvam, Structural properties of super power
graph of dihedral group D2n, preprint, 2021.

[17] C. H. Li, On isomorphisms of finite Cayley graphs—a survey, Discrete Math. 256 no. 1-2
(2002), 301–334. DOI MR Zbl

[18] X. Ma and H. Su, On the order supergraph of the power graph of a finite group, Ric. Mat.
71 no. 2 (2022), 381–390. DOI MR Zbl

Rev. Un. Mat. Argentina, Vol. 68, No. 2 (2025)

https://doi.org/10.5614/ejgta.2013.1.2.6
https://www.ams.org/mathscinet-getitem?mr=3145411
https://zbmath.org/?q=an:1306.05090
https://doi.org/10.12958/adm584
https://www.ams.org/mathscinet-getitem?mr=4210243
https://zbmath.org/?q=an:1491.20029
https://www.ams.org/mathscinet-getitem?mr=2368647
https://zbmath.org/?q=an:1134.05001
https://doi.org/10.1007/s00233-008-9132-y
https://www.ams.org/mathscinet-getitem?mr=2511776
https://zbmath.org/?q=an:1207.05075
https://doi.org/10.1016/0012-365X(95)00072-5
https://www.ams.org/mathscinet-getitem?mr=1405010
https://zbmath.org/?q=an:0857.05067
https://zbmath.org/?q=an:0972.00001
https://doi.org/10.1016/j.ejc.2016.09.005
https://www.ams.org/mathscinet-getitem?mr=3567537
https://zbmath.org/?q=an:1348.05095
https://doi.org/10.2298/fil1716323h
https://www.ams.org/mathscinet-getitem?mr=3733505
https://zbmath.org/?q=an:1499.05362
https://doi.org/10.3906/mat-1711-78
https://www.ams.org/mathscinet-getitem?mr=3843960
https://zbmath.org/?q=an:1424.05135
https://doi.org/10.24330/ieja.586838
https://www.ams.org/mathscinet-getitem?mr=3985903
https://zbmath.org/?q=an:1417.05097
https://www.ams.org/mathscinet-getitem?mr=1875643
https://zbmath.org/?q=an:0999.16036
https://www.ams.org/mathscinet-getitem?mr=2064147
https://zbmath.org/?q=an:1070.68097
https://www.ams.org/mathscinet-getitem?mr=2080457
https://zbmath.org/?q=an:1152.68482
https://doi.org/10.1016/j.disc.2008.11.030
https://www.ams.org/mathscinet-getitem?mr=2548552
https://zbmath.org/?q=an:1206.05050
https://doi.org/10.1080/09728600.2021.1953359
https://www.ams.org/mathscinet-getitem?mr=4310374
https://zbmath.org/?q=an:1476.05071
https://doi.org/10.1016/S0012-365X(01)00438-1
https://www.ams.org/mathscinet-getitem?mr=1927074
https://zbmath.org/?q=an:1018.05044
https://doi.org/10.1007/s11587-020-00520-w
https://www.ams.org/mathscinet-getitem?mr=4514218
https://zbmath.org/?q=an:1531.05116


SUPERPOWER GRAPHS OF FINITE ABELIAN GROUPS 773

[19] M. Mirzargar, A survey on the automorphism groups of the commuting graphs and power
graphs, Facta Univ. Ser. Math. Inform. 34 no. 4 (2019), 729–743. DOI MR Zbl

[20] D. Witte and J. A. Gallian, A survey: Hamiltonian cycles in Cayley graphs, Discrete
Math. 51 no. 3 (1984), 293–304. DOI MR Zbl

A. Kumar
Department of Mathematical Sciences, Indian Institute of Technology, Banaras Hindu
University, Varanasi-221005, India
ajayaggarwal4990@gmail.com

L. SelvaganeshB

Department of Mathematical Sciences, Indian Institute of Technology, Banaras Hindu
University, Varanasi-221005, India
lavanyas.mat@iitbhu.ac.in

T. Tamizh Chelvam
Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu
627012, India
tamche59@gmail.com

Received: December 24, 2023
Accepted: November 22, 2024
Early view: December 3, 2024

Rev. Un. Mat. Argentina, Vol. 68, No. 2 (2025)

https://doi.org/10.22190/fumi1904729m
https://www.ams.org/mathscinet-getitem?mr=4049749
https://zbmath.org/?q=an:1474.05385
https://doi.org/10.1016/0012-365X(84)90010-4
https://www.ams.org/mathscinet-getitem?mr=762322
https://zbmath.org/?q=an:0712.05039

	1. Introduction
	2. Preliminaries
	3. Dominant set of S(G)
	4. Hamiltonicity of S(G)
	5. Vertex connectivity of S(G)
	6. Open problems
	References

