Current volume
Past volumes
1952-1968 Revista de la Unión Matemática Argentina y de la Asociación Física Argentina
1944-1951 Revista de la Unión Matemática Argentina; órgano de la Asociación Física Argentina
1936-1944
|
Vertical Littlewood–Paley functions related to a Schrödinger operator
Bruno Bongioanni, Eleonor Harboure, and Pablo Quijano
Volume 66, no. 1
(2023),
pp. 117–139
https://doi.org/10.33044/revuma.4381
Download PDF
Abstract
In this work we consider the Littlewood–Paley quadratic function associated to
the Schrödinger operator $\mathcal{L}= -\Delta+V$ involving spatial derivatives
of the semigroup's kernel. Under an appropriate reverse-Hölder
condition on the potential we show boundedness on weighted $L^p$ spaces for
$1 < p < p_0$, where $p_0$ depends on the order of the reverse-Hölder
property. Using a subordination formula we extend these results to the
corresponding quadratic function associated to the semigroup related to
$\mathcal{L}^\alpha$, $0 < \alpha < 1$.
References
-
I. Abu-Falahah, P. R. Stinga, and J. L. Torrea, Square functions associated to Schrödinger operators, Studia Math. 203 no. 2 (2011), 171–194. DOI MR Zbl
-
B. Bongioanni, A. Cabral, and E. Harboure, Extrapolation for classes of weights related to a family of operators and applications, Potential Anal. 38 no. 4 (2013), 1207–1232. DOI MR Zbl
-
B. Bongioanni, E. Harboure, and O. Salinas, Classes of weights related to Schrödinger operators, J. Math. Anal. Appl. 373 no. 2 (2011), 563–579. DOI MR Zbl
-
J. Dziubański, G. Garrigós, T. Martínez, J. L. Torrea, and J. Zienkiewicz, $BMO$ spaces related to Schrödinger operators with potentials satisfying a reverse Hölder inequality, Math. Z. 249 no. 2 (2005), 329–356. DOI MR Zbl
-
J. Dziubański and J. Zienkiewicz, Hardy space $H^1$ associated to Schrödinger operator with potential satisfying reverse Hölder inequality, Rev. Mat. Iberoamericana 15 no. 2 (1999), 279–296. DOI MR Zbl
-
J. Dziubański and J. Zienkiewicz, $H^p$ spaces for Schrödinger operators, in Fourier Analysis and Related Topics (Będlewo, 2000), Banach Center Publ. 56, Polish Acad. Sci. Inst. Math., Warsaw, 2002, pp. 45–53. DOI MR Zbl
-
A. Grigor'yan, Heat kernels and function theory on metric measure spaces, in Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces (Paris, 2002), Contemp. Math. 338, Amer. Math. Soc., Providence, RI, 2003, pp. 143–172. DOI MR Zbl
-
P. Li, T. Qian, Z. Wang, and C. Zhang, Regularity of fractional heat semigroup associated with Schrödinger operators, Fractal Fractional 6 no. 2 (2022), Paper No. 112. DOI
-
E. M. Ouhabaz, Littlewood-Paley-Stein functions for Schrödinger operators, Front. Sci. Eng. 6 no. 1 (2016), 99–107. DOI
-
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences 44, Springer-Verlag, New York, 1983. DOI MR Zbl
-
Z. W. Shen, $L^p$ estimates for Schrödinger operators with certain potentials, Ann. Inst. Fourier (Grenoble) 45 no. 2 (1995), 513–546. DOI MR Zbl
-
Z. Wang, P. Li, and C. Zhang, Boundedness of operators generated by fractional semigroups associated with Schrödinger operators on Campanato type spaces via $T1$ theorem, Banach J. Math. Anal. 15 no. 4 (2021), Paper No. 64, 37 pp. DOI MR Zbl
-
K. Yosida, Functional Analysis, sixth ed., Grundlehren der Mathematischen Wissenschaften 123, Springer-Verlag, Berlin-New York, 1980. MR Zbl
|