Revista de la
Unión Matemática Argentina
Vertical Littlewood–Paley functions related to a Schrödinger operator
Bruno Bongioanni, Eleonor Harboure, and Pablo Quijano
Volume 66, no. 1 (2023), pp. 117–139    

https://doi.org/10.33044/revuma.4381

Download PDF

Abstract

In this work we consider the Littlewood–Paley quadratic function associated to the Schrödinger operator $\mathcal{L}= -\Delta+V$ involving spatial derivatives of the semigroup's kernel. Under an appropriate reverse-Hölder condition on the potential we show boundedness on weighted $L^p$ spaces for $1 < p < p_0$, where $p_0$ depends on the order of the reverse-Hölder property. Using a subordination formula we extend these results to the corresponding quadratic function associated to the semigroup related to $\mathcal{L}^\alpha$, $0 < \alpha < 1$.

References

  1. I. Abu-Falahah, P. R. Stinga, and J. L. Torrea, Square functions associated to Schrödinger operators, Studia Math. 203 no. 2 (2011), 171–194.  DOI  MR  Zbl
  2. B. Bongioanni, A. Cabral, and E. Harboure, Extrapolation for classes of weights related to a family of operators and applications, Potential Anal. 38 no. 4 (2013), 1207–1232.  DOI  MR  Zbl
  3. B. Bongioanni, E. Harboure, and O. Salinas, Classes of weights related to Schrödinger operators, J. Math. Anal. Appl. 373 no. 2 (2011), 563–579.  DOI  MR  Zbl
  4. J. Dziubański, G. Garrigós, T. Martínez, J. L. Torrea, and J. Zienkiewicz, $BMO$ spaces related to Schrödinger operators with potentials satisfying a reverse Hölder inequality, Math. Z. 249 no. 2 (2005), 329–356.  DOI  MR  Zbl
  5. J. Dziubański and J. Zienkiewicz, Hardy space $H^1$ associated to Schrödinger operator with potential satisfying reverse Hölder inequality, Rev. Mat. Iberoamericana 15 no. 2 (1999), 279–296.  DOI  MR  Zbl
  6. J. Dziubański and J. Zienkiewicz, $H^p$ spaces for Schrödinger operators, in Fourier Analysis and Related Topics (Będlewo, 2000), Banach Center Publ. 56, Polish Acad. Sci. Inst. Math., Warsaw, 2002, pp. 45–53.  DOI  MR  Zbl
  7. A. Grigor'yan, Heat kernels and function theory on metric measure spaces, in Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces (Paris, 2002), Contemp. Math. 338, Amer. Math. Soc., Providence, RI, 2003, pp. 143–172.  DOI  MR  Zbl
  8. P. Li, T. Qian, Z. Wang, and C. Zhang, Regularity of fractional heat semigroup associated with Schrödinger operators, Fractal Fractional 6 no. 2 (2022), Paper No. 112.  DOI
  9. E. M. Ouhabaz, Littlewood-Paley-Stein functions for Schrödinger operators, Front. Sci. Eng. 6 no. 1 (2016), 99–107.  DOI
  10. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences 44, Springer-Verlag, New York, 1983.  DOI  MR  Zbl
  11. Z. W. Shen, $L^p$ estimates for Schrödinger operators with certain potentials, Ann. Inst. Fourier (Grenoble) 45 no. 2 (1995), 513–546.  DOI  MR  Zbl
  12. Z. Wang, P. Li, and C. Zhang, Boundedness of operators generated by fractional semigroups associated with Schrödinger operators on Campanato type spaces via $T1$ theorem, Banach J. Math. Anal. 15 no. 4 (2021), Paper No. 64, 37 pp.  DOI  MR  Zbl
  13. K. Yosida, Functional Analysis, sixth ed., Grundlehren der Mathematischen Wissenschaften 123, Springer-Verlag, Berlin-New York, 1980.  MR  Zbl