Revista de la
Unión Matemática Argentina
Upper endpoint estimates and extrapolation for commutators
Kangwei Li, Sheldy Ombrosi, and Israel P. Rivera-Ríos
Volume 66, no. 1 (2023), pp. 213–228    

https://doi.org/10.33044/revuma.4362

Download PDF

Abstract

In this note we revisit the upper endpoint estimates for commutators following the line by Harboure, Segovia, and Torrea [Illinois J. Math. 41 no. 4 (1997), 676–700]. Relying upon the suitable BMO subspace suited for the commutator that was introduced in Accomazzo's PhD thesis (2020), we obtain a counterpart for commutators of the upper endpoint extrapolation result by Harboure, Macías and Segovia [Amer. J. Math. 110 no. 3 (1988), 383–397]. Multilinear counterparts are provided as well.

References

  1. N. Accomazzo Scotti, Topics in Harmonic Analysis; commutators and directional singular integrals, Ph.D. thesis, University of the Basque Country, 2020. Available at https://addi.ehu.es/handle/10810/47974.
  2. M. J. Carro, L. Grafakos, J. M. Martell, and F. Soria, Multilinear extrapolation and applications to the bilinear Hilbert transform, J. Math. Anal. Appl. 357 no. 2 (2009), 479–497.  DOI  MR  Zbl
  3. A. Criado, C. Pérez, and I. P. Rivera-Ríos, Sharp quantitative weighted BMO estimates and a new proof of the Harboure-Macías-Segovia's extrapolation theorem, in New Trends in Applied Harmonic Analysis. Vol. 2—Harmonic Analysis, Geometric Measure Theory, and Applications, Appl. Numer. Harmon. Anal., Birkhäuser/Springer, Cham, 2019, pp. 241–256.  DOI  MR  Zbl
  4. D. Cruz-Uribe, J. M. Martell, and C. Pérez, Extrapolation from $A_\infty$ weights and applications, J. Funct. Anal. 213 no. 2 (2004), 412–439.  DOI  MR  Zbl
  5. D. Cruz-Uribe, J. M. Martell, and C. Pérez, Weighted weak-type inequalities and a conjecture of Sawyer, Int. Math. Res. Not. no. 30 (2005), 1849–1871.  DOI  MR  Zbl
  6. D. Cruz-Uribe and C. Pérez, Two weight extrapolation via the maximal operator, J. Funct. Anal. 174 no. 1 (2000), 1–17.  DOI  MR  Zbl
  7. D. Cruz-Uribe and J. M. Martell, Limited range multilinear extrapolation with applications to the bilinear Hilbert transform, Math. Ann. 371 no. 1-2 (2018), 615–653.  DOI  MR  Zbl
  8. D. Cruz-Uribe, J. M. Martell, and C. Pérez, Extensions of Rubio de Francia's extrapolation theorem, Collect. Math. Special issue (2006), 195–231.  MR  Zbl
  9. D. V. Cruz-Uribe, J. M. Martell, and C. Pérez, Weights, Extrapolation and the Theory of Rubio de Francia, Operator Theory: Advances and Applications 215, Birkhäuser/Springer Basel AG, Basel, 2011.  DOI  MR  Zbl
  10. O. Dragičević, L. Grafakos, M. C. Pereyra, and S. Petermichl, Extrapolation and sharp norm estimates for classical operators on weighted Lebesgue spaces, Publ. Mat. 49 no. 1 (2005), 73–91.  DOI  MR  Zbl
  11. J. Duoandikoetxea, Extrapolation of weights revisited: new proofs and sharp bounds, J. Funct. Anal. 260 no. 6 (2011), 1886–1901.  DOI  MR  Zbl
  12. J. Duoandikoetxea, Weighted inequalities and extrapolation, in Advanced Courses of Mathematical Analysis V, World Sci. Publ., Hackensack, NJ, 2016, pp. 228–243.  MR  Zbl
  13. J. L. Rubio de Francia, Factorization theory and $A_{p}$ weights, Amer. J. Math. 106 no. 3 (1984), 533–547.  DOI  MR  Zbl
  14. J. L. Rubio de Francia, Factorization and extrapolation of weights, Bull. Amer. Math. Soc. (N.S.) 7 no. 2 (1982), 393–395.  DOI  MR  Zbl
  15. J. García-Cuerva, General endpoint results in extrapolation, in Analysis and Partial Differential Equations, Lecture Notes in Pure and Appl. Math. 122, Dekker, New York, 1990, pp. 161–169.  MR  Zbl
  16. L. Grafakos and J. M. Martell, Extrapolation of weighted norm inequalities for multivariable operators and applications, J. Geom. Anal. 14 no. 1 (2004), 19–46.  DOI  MR  Zbl
  17. E. Harboure, R. Macías, and C. Segovia, An extrapolation theorem for pairs of weights, Rev. Un. Mat. Argentina 40 no. 3-4 (1997), 37–48.  MR  Zbl
  18. E. Harboure, R. A. Macías, and C. Segovia, Extrapolation results for classes of weights, Amer. J. Math. 110 no. 3 (1988), 383–397.  DOI  MR  Zbl
  19. E. Harboure, C. Segovia, and J. L. Torrea, Boundedness of commutators of fractional and singular integrals for the extreme values of $p$, Illinois J. Math. 41 no. 4 (1997), 676–700.  DOI  MR  Zbl
  20. J.-L. Journé, Calderón-Zygmund Operators, Pseudodifferential Operators and the Cauchy Integral of Calderón, Lecture Notes in Mathematics 994, Springer-Verlag, Berlin, 1983.  DOI  MR  Zbl
  21. L. D. Ky, Bilinear decompositions and commutators of singular integral operators, Trans. Amer. Math. Soc. 365 no. 6 (2013), 2931–2958.  DOI  MR  Zbl
  22. A. K. Lerner, On pointwise estimates involving sparse operators, New York J. Math. 22 (2016), 341–349.  MR  Zbl Available at https://www.emis.de/journals/NYJM/j/2016/22-15.html.
  23. A. K. Lerner, S. Ombrosi, and I. P. Rivera-Ríos, On pointwise and weighted estimates for commutators of Calderón-Zygmund operators, Adv. Math. 319 (2017), 153–181.  DOI  MR  Zbl
  24. K. Li, Sparse domination theorem for multilinear singular integral operators with $L^r$-Hörmander condition, Michigan Math. J. 67 no. 2 (2018), 253–265.  DOI  MR  Zbl
  25. K. Li, J. M. Martell, H. Martikainen, S. Ombrosi, and E. Vuorinen, End-point estimates, extrapolation for multilinear Muckenhoupt classes, and applications, Trans. Amer. Math. Soc. 374 no. 1 (2021), 97–135.  DOI  MR  Zbl
  26. K. Li, J. M. Martell, and S. Ombrosi, Extrapolation for multilinear Muckenhoupt classes and applications, Adv. Math. 373 (2020), 107286, 43 pp.  DOI  MR  Zbl
  27. B. Muckenhoupt and R. L. Wheeden, Weighted bounded mean oscillation and the Hilbert transform, Studia Math. 54 no. 3 (1975/76), 221–237.  DOI  MR  Zbl
  28. Z. Nieraeth, Quantitative estimates and extrapolation for multilinear weight classes, Math. Ann. 375 no. 1-2 (2019), 453–507.  DOI  MR  Zbl
  29. Z. Nieraeth and G. Rey, Weighted BMO estimates for singular integrals and endpoint extrapolation in Banach function spaces, J. Math. Anal. Appl. 521 no. 1 (2023), Paper No. 126942, 18 pp.  DOI  MR  Zbl
  30. C. Pérez, Endpoint estimates for commutators of singular integral operators, J. Funct. Anal. 128 no. 1 (1995), 163–185.  DOI  MR  Zbl