Current volume
Past volumes
1952-1968 Revista de la Unión Matemática Argentina y de la Asociación Física Argentina
1944-1951 Revista de la Unión Matemática Argentina; órgano de la Asociación Física Argentina
1936-1944
|
A tribute to Pola Harboure: Isoperimetric inequalities and the HMS extrapolation theorem
Carlos Pérez and Ezequiel Rela
Volume 66, no. 1
(2023),
pp. 265–280
https://doi.org/10.33044/revuma.4356
Download PDF
Abstract
We give a simpler proof of the Gagliardo estimate with a measure obtained by
Franchi, Pérez, and Wheeden [Proc. London Math. Soc. (3)
80 no. 3 (2000), 665–689], and improved by Pérez and Rela
[Trans. Amer. Math. Soc. 372 no. 9 (2019), 6087–6133].
This result will be further improved using fractional Poincaré type
inequalities with the extra bonus of Bourgain–Brezis–Mironescu as done by
Hurri-Syrjänen, Martínez-Perales, Pérez, and Vähäkangas
[Internat. Math. Res. Notices (2022), rnac246] with a new argument. This
will be used with the HMS extrapolation theorem to get $L^p$ type result.
References
-
D. R. Adams and L. I. Hedberg, Function Spaces and Potential Theory, Grundlehren der mathematischen Wissenschaften 314, Springer-Verlag, Berlin, 1996. DOI MR
-
J. Bourgain, H. Brezis, and P. Mironescu, Limiting embedding theorems for $W^{s,p}$ when $s\uparrow1$ and applications, J. Anal. Math. 87 (2002), 77–101. DOI MR Zbl
-
M. E. Cejas, C. Mosquera, C. Pérez, and E. Rela, Self-improving Poincaré-Sobolev type functionals in product spaces, J. Anal. Math. 149 no. 1 (2023), 1–48. DOI MR Zbl
-
S.-K. Chua, Embedding and compact embedding for weighted and abstract Sobolev spaces, Pacific J. Math. 303 no. 2 (2019), 519–568. DOI MR Zbl
-
R. R. Coifman and R. Rochberg, Another characterization of BMO, Proc. Amer. Math. Soc. 79 no. 2 (1980), 249–254. DOI MR Zbl
-
H. Cong, K. Moen, and C. Pérez, A homage to Guido Weiss and his leadership of the Saint Louis team: Commutators of singular integrals and Sobolev inequalities, to appear in a special volume by Birkhäuser/Springer dedicated to the memory of Guido L. Weiss. arXiv 2307.15594 [math.CA].
-
H. Cong, K. Moen, and C. Pérez, Pointwise estimates for rough operators with applications to Sobolev inequalities, to appear in Journal d'Analyse Mathématique. arXiv 2307.10417 [math.CA].
-
D. V. Cruz-Uribe, J. M. Martell, and C. Pérez, Weights, extrapolation and the theory of Rubio de Francia, Operator Theory: Advances and Applications 215, Birkhäuser/Springer, Basel, 2011. DOI MR Zbl
-
G. David and S. Semmes, Strong $A_\infty$ weights, Sobolev inequalities and quasiconformal mappings, in Analysis and Partial Differential Equations, Lecture Notes in Pure and Appl. Math. 122, Dekker, New York, 1990, pp. 101–111. MR Zbl
-
J. Duoandikoetxea, Fourier Analysis, Graduate Studies in Mathematics 29, American Mathematical Society, Providence, RI, 2001. DOI MR
-
B. Dyda, L. Ihnatsyeva, and A. V. Vähäkangas, On improved fractional Sobolev-Poincaré inequalities, Ark. Mat. 54 no. 2 (2016), 437–454. DOI MR Zbl
-
H. Federer and W. H. Fleming, Normal and integral currents, Ann. of Math. (2) 72 (1960), 458–520. DOI MR
-
C. Fefferman and E. M. Stein, Some maximal inequalities, Amer. J. Math. 93 (1971), 107–115. DOI MR Zbl
-
B. Franchi and P. Hajłasz, How to get rid of one of the weights in a two-weight Poincaré inequality?, Ann. Polon. Math. 74 (2000), 97–103. DOI MR Zbl
-
B. Franchi, G. Lu, and R. L. Wheeden, A relationship between Poincaré-type inequalities and representation formulas in spaces of homogeneous type, Internat. Math. Res. Notices no. 1 (1996), 1–14. DOI MR Zbl
-
B. Franchi, C. Pérez, and R. L. Wheeden, Sharp geometric Poincaré inequalities for vector fields and non-doubling measures, Proc. London Math. Soc. (3) 80 no. 3 (2000), 665–689. DOI MR Zbl
-
E. Gagliardo, Proprietà di alcune classi di funzioni in più variabili, Ricerche Mat. 7 (1958), 102–137. MR Zbl
-
J. García-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland Mathematics Studies 116, North-Holland, Amsterdam, 1985. MR Zbl
-
P. Hajłasz, Sobolev inequalities, truncation method, and John domains, in Papers on Analysis, Rep. Univ. Jyväskylä Dep. Math. Stat. 83, Univ. Jyväskylä, Jyväskylä, 2001, pp. 109–126. MR Zbl
-
E. Harboure, R. Macías, and C. Segovia, An extrapolation theorem for pairs of weights, Rev. Un. Mat. Argentina 40 no. 3-4 (1997), 37–48. MR Zbl
-
E. Harboure, R. A. Macías, and C. Segovia, Extrapolation results for classes of weights, Amer. J. Math. 110 no. 3 (1988), 383–397. DOI MR Zbl
-
R. Hurri-Syrjänen, J. C. Martínez-Perales, C. Pérez, and A. V. Vähäkangas, On the BBM-phenomenon in fractional Poincaré–Sobolev inequalities with weights, Internat. Math. Res. Notices (2022), rnac246. DOI
-
R. Hurri-Syrjänen, J. C. Martínez-Perales, C. Pérez, and A. V. Vähäkangas, On the weighted inequality between the Gagliardo and Sobolev seminorms, 2023. arXiv 2302.14029 [math.CA].
-
J. Kinnunen, J. Lehrbäck, and A. Vähäkangas, Maximal Function Methods for Sobolev Spaces, Mathematical Surveys and Monographs 257, American Mathematical Society, Providence, RI, 2021. DOI MR Zbl
-
M. T. Lacey, K. Moen, C. Pérez, and R. H. Torres, Sharp weighted bounds for fractional integral operators, J. Funct. Anal. 259 no. 5 (2010), 1073–1097. DOI MR Zbl
-
N. S. Landkof, Foundations of Modern Potential Theory, Die Grundlehren der mathematischen Wissenschaften 180, Springer-Verlag, New York-Heidelberg, 1972. MR Zbl
-
V. G. Maz'ya, Sobolev Spaces, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1985. DOI MR Zbl
-
B. Muckenhoupt and R. Wheeden, Weighted norm inequalities for fractional integrals, Trans. Amer. Math. Soc. 192 (1974), 261–274. DOI MR Zbl
-
K. Myyryläinen, C. Pérez, and J. Weigt, Weighted fractional Poincaré inequalities via isoperimetric inequalities, 2023. arXiv 2304.02681 [math.CA].
-
R. Osserman, The isoperimetric inequality, Bull. Amer. Math. Soc. 84 no. 6 (1978), 1182–1238. DOI MR Zbl
-
J. M. Perales and C. Pérez, Remarks on vector-valued Gagliardo and Poincaré–Sobolev-type inequalities with weights, in Potentials and Partial Differential Equations: The Legacy of David R. Adams, De Gruyter, Berlin, Boston, 2023, pp. 265–286. DOI
-
C. Pérez and E. Rela, Degenerate Poincaré-Sobolev inequalities, Trans. Amer. Math. Soc. 372 no. 9 (2019), 6087–6133. DOI MR Zbl
-
J. Recchi, Mixed $A_1-A_\infty$ bounds for fractional integrals, J. Math. Anal. Appl. 403 no. 1 (2013), 283–296. DOI MR Zbl
-
L. Saloff-Coste, Aspects of Sobolev-type Inequalities, London Mathematical Society Lecture Note Series 289, Cambridge University Press, Cambridge, 2002. MR Zbl
-
G. Talenti, Inequalities in rearrangement invariant function spaces, in Nonlinear Analysis, Function Spaces and Applications, Vol. 5 (Prague, 1994), Prometheus, Prague, 1994, pp. 177–230. MR Zbl
-
B. O. Turesson, Nonlinear Potential Theory and Weighted Sobolev Spaces, Lecture Notes in Mathematics 1736, Springer-Verlag, Berlin, 2000. DOI MR Zbl
-
W. P. Ziemer, Weakly Differentiable Functions, Graduate Texts in Mathematics 120, Springer-Verlag, New York, 1989. DOI MR Zbl
|