Revista de la
Unión Matemática Argentina
A tribute to Pola Harboure: Isoperimetric inequalities and the HMS extrapolation theorem
Carlos Pérez and Ezequiel Rela
Volume 66, no. 1 (2023), pp. 265–280    

https://doi.org/10.33044/revuma.4356

Download PDF

Abstract

We give a simpler proof of the Gagliardo estimate with a measure obtained by Franchi, Pérez, and Wheeden [Proc. London Math. Soc. (3) 80 no. 3 (2000), 665–689], and improved by Pérez and Rela [Trans. Amer. Math. Soc. 372 no. 9 (2019), 6087–6133]. This result will be further improved using fractional Poincaré type inequalities with the extra bonus of Bourgain–Brezis–Mironescu as done by Hurri-Syrjänen, Martínez-Perales, Pérez, and Vähäkangas [Internat. Math. Res. Notices (2022), rnac246] with a new argument. This will be used with the HMS extrapolation theorem to get $L^p$ type result.

References

  1. D. R. Adams and L. I. Hedberg, Function Spaces and Potential Theory, Grundlehren der mathematischen Wissenschaften 314, Springer-Verlag, Berlin, 1996.  DOI  MR
  2. J. Bourgain, H. Brezis, and P. Mironescu, Limiting embedding theorems for $W^{s,p}$ when $s\uparrow1$ and applications, J. Anal. Math. 87 (2002), 77–101.  DOI  MR  Zbl
  3. M. E. Cejas, C. Mosquera, C. Pérez, and E. Rela, Self-improving Poincaré-Sobolev type functionals in product spaces, J. Anal. Math. 149 no. 1 (2023), 1–48.  DOI  MR  Zbl
  4. S.-K. Chua, Embedding and compact embedding for weighted and abstract Sobolev spaces, Pacific J. Math. 303 no. 2 (2019), 519–568.  DOI  MR  Zbl
  5. R. R. Coifman and R. Rochberg, Another characterization of BMO, Proc. Amer. Math. Soc. 79 no. 2 (1980), 249–254.  DOI  MR  Zbl
  6. H. Cong, K. Moen, and C. Pérez, A homage to Guido Weiss and his leadership of the Saint Louis team: Commutators of singular integrals and Sobolev inequalities, to appear in a special volume by Birkhäuser/Springer dedicated to the memory of Guido L. Weiss. arXiv 2307.15594 [math.CA].
  7. H. Cong, K. Moen, and C. Pérez, Pointwise estimates for rough operators with applications to Sobolev inequalities, to appear in Journal d'Analyse Mathématique. arXiv 2307.10417 [math.CA].
  8. D. V. Cruz-Uribe, J. M. Martell, and C. Pérez, Weights, extrapolation and the theory of Rubio de Francia, Operator Theory: Advances and Applications 215, Birkhäuser/Springer, Basel, 2011.  DOI  MR  Zbl
  9. G. David and S. Semmes, Strong $A_\infty$ weights, Sobolev inequalities and quasiconformal mappings, in Analysis and Partial Differential Equations, Lecture Notes in Pure and Appl. Math. 122, Dekker, New York, 1990, pp. 101–111.  MR  Zbl
  10. J. Duoandikoetxea, Fourier Analysis, Graduate Studies in Mathematics 29, American Mathematical Society, Providence, RI, 2001.  DOI  MR
  11. B. Dyda, L. Ihnatsyeva, and A. V. Vähäkangas, On improved fractional Sobolev-Poincaré inequalities, Ark. Mat. 54 no. 2 (2016), 437–454.  DOI  MR  Zbl
  12. H. Federer and W. H. Fleming, Normal and integral currents, Ann. of Math. (2) 72 (1960), 458–520.  DOI  MR
  13. C. Fefferman and E. M. Stein, Some maximal inequalities, Amer. J. Math. 93 (1971), 107–115.  DOI  MR  Zbl
  14. B. Franchi and P. Hajłasz, How to get rid of one of the weights in a two-weight Poincaré inequality?, Ann. Polon. Math. 74 (2000), 97–103.  DOI  MR  Zbl
  15. B. Franchi, G. Lu, and R. L. Wheeden, A relationship between Poincaré-type inequalities and representation formulas in spaces of homogeneous type, Internat. Math. Res. Notices no. 1 (1996), 1–14.  DOI  MR  Zbl
  16. B. Franchi, C. Pérez, and R. L. Wheeden, Sharp geometric Poincaré inequalities for vector fields and non-doubling measures, Proc. London Math. Soc. (3) 80 no. 3 (2000), 665–689.  DOI  MR  Zbl
  17. E. Gagliardo, Proprietà di alcune classi di funzioni in più variabili, Ricerche Mat. 7 (1958), 102–137.  MR  Zbl
  18. J. García-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland Mathematics Studies 116, North-Holland, Amsterdam, 1985.  MR  Zbl
  19. P. Hajłasz, Sobolev inequalities, truncation method, and John domains, in Papers on Analysis, Rep. Univ. Jyväskylä Dep. Math. Stat. 83, Univ. Jyväskylä, Jyväskylä, 2001, pp. 109–126.  MR  Zbl
  20. E. Harboure, R. Macías, and C. Segovia, An extrapolation theorem for pairs of weights, Rev. Un. Mat. Argentina 40 no. 3-4 (1997), 37–48.  MR  Zbl
  21. E. Harboure, R. A. Macías, and C. Segovia, Extrapolation results for classes of weights, Amer. J. Math. 110 no. 3 (1988), 383–397.  DOI  MR  Zbl
  22. R. Hurri-Syrjänen, J. C. Martínez-Perales, C. Pérez, and A. V. Vähäkangas, On the BBM-phenomenon in fractional Poincaré–Sobolev inequalities with weights, Internat. Math. Res. Notices (2022), rnac246.  DOI
  23. R. Hurri-Syrjänen, J. C. Martínez-Perales, C. Pérez, and A. V. Vähäkangas, On the weighted inequality between the Gagliardo and Sobolev seminorms, 2023. arXiv 2302.14029 [math.CA].
  24. J. Kinnunen, J. Lehrbäck, and A. Vähäkangas, Maximal Function Methods for Sobolev Spaces, Mathematical Surveys and Monographs 257, American Mathematical Society, Providence, RI, 2021.  DOI  MR  Zbl
  25. M. T. Lacey, K. Moen, C. Pérez, and R. H. Torres, Sharp weighted bounds for fractional integral operators, J. Funct. Anal. 259 no. 5 (2010), 1073–1097.  DOI  MR  Zbl
  26. N. S. Landkof, Foundations of Modern Potential Theory, Die Grundlehren der mathematischen Wissenschaften 180, Springer-Verlag, New York-Heidelberg, 1972.  MR  Zbl
  27. V. G. Maz'ya, Sobolev Spaces, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1985.  DOI  MR  Zbl
  28. B. Muckenhoupt and R. Wheeden, Weighted norm inequalities for fractional integrals, Trans. Amer. Math. Soc. 192 (1974), 261–274.  DOI  MR  Zbl
  29. K. Myyryläinen, C. Pérez, and J. Weigt, Weighted fractional Poincaré inequalities via isoperimetric inequalities, 2023. arXiv 2304.02681 [math.CA].
  30. R. Osserman, The isoperimetric inequality, Bull. Amer. Math. Soc. 84 no. 6 (1978), 1182–1238.  DOI  MR  Zbl
  31. J. M. Perales and C. Pérez, Remarks on vector-valued Gagliardo and Poincaré–Sobolev-type inequalities with weights, in Potentials and Partial Differential Equations: The Legacy of David R. Adams, De Gruyter, Berlin, Boston, 2023, pp. 265–286.  DOI
  32. C. Pérez and E. Rela, Degenerate Poincaré-Sobolev inequalities, Trans. Amer. Math. Soc. 372 no. 9 (2019), 6087–6133.  DOI  MR  Zbl
  33. J. Recchi, Mixed $A_1-A_\infty$ bounds for fractional integrals, J. Math. Anal. Appl. 403 no. 1 (2013), 283–296.  DOI  MR  Zbl
  34. L. Saloff-Coste, Aspects of Sobolev-type Inequalities, London Mathematical Society Lecture Note Series 289, Cambridge University Press, Cambridge, 2002.  MR  Zbl
  35. G. Talenti, Inequalities in rearrangement invariant function spaces, in Nonlinear Analysis, Function Spaces and Applications, Vol. 5 (Prague, 1994), Prometheus, Prague, 1994, pp. 177–230.  MR  Zbl
  36. B. O. Turesson, Nonlinear Potential Theory and Weighted Sobolev Spaces, Lecture Notes in Mathematics 1736, Springer-Verlag, Berlin, 2000.  DOI  MR  Zbl
  37. W. P. Ziemer, Weakly Differentiable Functions, Graduate Texts in Mathematics 120, Springer-Verlag, New York, 1989.  DOI  MR  Zbl