Revista de la
Unión Matemática Argentina
$L^p(\mathbb{R}^n)$-dimension free estimates of the Riesz transforms
José L. Torrea
Volume 66, no. 1 (2023), pp. 311–323    

https://doi.org/10.33044/revuma.4359

Download PDF

Abstract

In this note we describe some known results about dimension free boundedness in $L^p(\mathbb{R}^n)$ of the Riesz transforms, for $p$ in the range $1 < p < \infty$.

References

  1. N. Asmar, E. Berkson, and T. A. Gillespie, Transference of strong type maximal inequalities by separation-preserving representations, Amer. J. Math. 113 no. 1 (1991), 47–74.  DOI  MR  Zbl
  2. N. Asmar, E. Berkson, and T. A. Gillespie, Transferred bounds for square functions, Houston J. Math. 17 no. 4 (1991), 525–550.  MR  Zbl
  3. P. Auscher and M. J. Carro, Transference for radial multipliers and dimension free estimates, Trans. Amer. Math. Soc. 342 no. 2 (1994), 575–593.  DOI  MR  Zbl
  4. E. Berkson, A. T. Gillespie, and J. L. Torrea, Vector valued transference, in Proceedings of International Conference on Functional Space Theory and its Applications, Wuhan 2003, Research Information Ltd UK, pp. 1–27.
  5. E. Berkson, T. A. Gillespie, and P. S. Muhly, Generalized analyticity in UMD spaces, Ark. Mat. 27 no. 1 (1989), 1–14.  DOI  MR  Zbl
  6. A. P. Calderón, Ergodic theory and translation-invariant operators, Proc. Nat. Acad. Sci. U.S.A. 59 (1968), 349–353.  DOI  MR  Zbl
  7. A. P. Calderón and A. Zygmund, On singular integrals, Amer. J. Math. 78 (1956), 289–309.  DOI  MR  Zbl
  8. R. R. Coifman and G. Weiss, Transference Methods in Analysis, CBMS Regional Conference Series in Mathematics 31, American Mathematical Society, Providence, RI, 1976.  MR  Zbl
  9. M. Cotlar, A unified theory of Hilbert transforms and ergodic theorems, Rev. Mat. Cuyana 1 (1955), 105–167.  MR  Zbl
  10. T. Coulhon, D. Müller, and J. Zienkiewicz, About Riesz transforms on the Heisenberg groups, Math. Ann. 305 no. 2 (1996), 369–379.  DOI  MR  Zbl
  11. J. Duoandikoetxea and J. L. Rubio de Francia, Estimations indépendantes de la dimension pour les transformées de Riesz, C. R. Acad. Sci. Paris Sér. I Math. 300 no. 7 (1985), 193–196.  MR  Zbl
  12. T. A. Gillespie and J. L. Torrea, Weighted ergodic theory and dimension free estimates, Q. J. Math. 54 no. 3 (2003), 257–280.  DOI  MR  Zbl
  13. T. A. Gillespie and J. L. Torrea, Dimension free estimates for the oscillation of Riesz transforms, Israel J. Math. 141 (2004), 125–144.  DOI  MR  Zbl
  14. R. F. Gundy, Some topics in probability and analysis, CBMS Regional Conference Series in Mathematics 70, American Mathematical Society, Providence, RI, 1989.  DOI  MR  Zbl
  15. C. E. Gutiérrez, On the Riesz transforms for Gaussian measures, J. Funct. Anal. 120 no. 1 (1994), 107–134.  DOI  MR  Zbl
  16. E. Harboure, L. de Rosa, C. Segovia, and J. L. Torrea, $L^p$-dimension free boundedness for Riesz transforms associated to Hermite functions, Math. Ann. 328 no. 4 (2004), 653–682.  DOI  MR  Zbl
  17. P. A. Meyer, Transformations de Riesz pour les lois gaussiennes, in Séminaire de probabilités, XVIII, Lecture Notes in Math. 1059, Springer, Berlin, 1984, pp. 179–193.  DOI  MR  Zbl
  18. G. Pisier, Riesz transforms: a simpler analytic proof of P. A. Meyer's inequality, in Séminaire de probabilités, XXII, Lecture Notes in Math. 1321, Springer, Berlin, 1988, pp. 485–501.  DOI  MR  Zbl
  19. M. Riesz, Sur les fonctions conjuguées, Math. Z. 27 no. 1 (1928), 218–244.  DOI  MR  Zbl
  20. L. A. Santaló, Manuel Balanzat, 1912–1994, Rev. Un. Mat. Argentina 39 no. 3-4 (1995), 235–239.  MR  Zbl
  21. E. M. Stein, Some results in harmonic analysis in $\mathbf{R}^{n}$, for $n\rightarrow \infty $, Bull. Amer. Math. Soc. (N.S.) 9 no. 1 (1983), 71–73.  DOI  MR  Zbl
  22. E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series 30, Princeton University Press, Princeton, NJ, 1970.  MR  Zbl
  23. E. M. Stein, Topics in Harmonic Analysis Related to the Littlewood-Paley Theory, Annals of Mathematics Studies 63, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1970.  MR  Zbl
  24. S. Thangavelu, Lectures on Hermite and Laguerre Expansions, Mathematical Notes 42, Princeton University Press, Princeton, NJ, 1993.  MR  Zbl
  25. UBApsicologia, Volver a Enseñar V – Luis Santaló (1995), video, 2015. Available at https://www.youtube.com/watch?v=D1bKNxOdEFc.
  26. A. Zygmund, Trigonometric series: Vols. I, II, third ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2002.  MR  Zbl