Current volume
Past volumes
1952-1968 Revista de la Unión Matemática Argentina y de la Asociación Física Argentina
1944-1951 Revista de la Unión Matemática Argentina; órgano de la Asociación Física Argentina
1936-1944
|
On the second $\mathfrak{osp}(1|2)$-relative cohomology of the Lie superalgebra of contact vector fields on $\mathcal{C}^{1|1}$
Abderraouf Ghallabi, Nizar Ben Fraj, and Salem Faidi
Volume 68, no. 2
(2025),
pp. 349–367
Published online (final version): July 16, 2025
https://doi.org/10.33044/revuma.3888
Download PDF
Abstract
Let $\mathcal{K}(1)$ be the Lie superalgebra of contact vector fields on the
$(1,1)$-dimensional complex superspace; it contains the Möbius superalgebra
$\mathfrak{osp}(1|2)$. We classify $\mathfrak{osp}(1|2)$-invariant superanti-symmetric
binary differential operators from $\mathcal{K}(1)\wedge\mathcal{K}(1)$ to
$\mathfrak{D}_{\lambda,\mu}$ vanishing on $\mathfrak{osp}(1|2)$, where
$\mathfrak{D}_{\lambda,\mu}$ is the superspace of linear differential operators acting on
the superspaces of weighted densities. This result allows us to compute the second
differential $\mathfrak{osp}(1|2)$-relative cohomology of $\mathcal{K}(1)$ with
coefficients in $\mathfrak{D}_{\lambda,\mu}$.
References
-
I. Basdouri, M. B. Ammar, N. B. Fraj, M. Boujelbene, and K. Kamoun, Cohomology of the Lie superalgebra of contact vector fields on $\mathbb{K}^{1|1}$ and deformations of the superspace of symbols, J. Nonlinear Math. Phys. 16 no. 4 (2009), 373–409. DOI MR Zbl
-
N. Belghith, M. B. Ammar, and N. B. Fraj, Differential operators on the weighted densities on the supercircle $S^{1|1}$, Studia Sci. Math. Hungar. 52 no. 4 (2015), 477–503. DOI MR Zbl
-
M. Ben Ammar and M. Boujelbene, $\mathfrak{sl}(2)$-trivial deformations of ${\mathrm{Vect}}_{\mathrm{Pol}}(\mathbb{R})$-modules of symbols, SIGMA Symmetry Integrability Geom. Methods Appl. 4 (2008), Paper 065. DOI MR Zbl
-
S. Bouarroudj, Cohomology of the vector fields Lie algebras on $\mathbb{R}\mathbb{P}^1$ acting on bilinear differential operators, Int. J. Geom. Methods Mod. Phys. 2 no. 1 (2005), 23–40. DOI MR Zbl
-
S. Bouarroudj, Projective and conformal Schwarzian derivatives and cohomology of Lie algebras vector fields related to differential operators, Int. J. Geom. Methods Mod. Phys. 3 no. 4 (2006), 667–696. DOI MR Zbl
-
S. Bouarroudj, On $\mathfrak{sl}(2)$-relative cohomology of the Lie algebra of vector fields and differential operators, J. Nonlinear Math. Phys. 14 no. 1 (2007), 112–127. DOI MR Zbl
-
S. Bouarroudj and V. Y. Ovsienko, Three cocycles on ${\mathrm{Diff}}(S^1)$ generalizing the Schwarzian derivative, Internat. Math. Res. Notices no. 1 (1998), 25–39. DOI MR Zbl
-
C. H. Conley, Conformal symbols and the action of contact vector fields over the superline, J. Reine Angew. Math. 633 (2009), 115–163. DOI MR Zbl
-
D. B. Fuks, \emphCohomology of infinite-dimensional Lie algebras, Contemporary Soviet Mathematics, Consultants Bureau, New York, 1986. MR Zbl
-
H. Gargoubi, N. Mellouli, and V. Ovsienko, Differential operators on supercircle: conformally equivariant quantization and symbol calculus, Lett. Math. Phys. 79 no. 1 (2007), 51–65. DOI MR Zbl
-
H. Gargoubi and V. Ovsienko, Supertransvectants and symplectic geometry, Int. Math. Res. Not. IMRN no. 9 (2008), Article ID rnn021. DOI MR Zbl
-
F. Gieres and S. Theisen, Superconformally covariant operators and super-$W$-algebras, J. Math. Phys. 34 no. 12 (1993), 5964–5985. DOI MR Zbl
-
W.-J. Huang, Superconformal covariantization of superdifferential operator on $(1|1)$ superspace and classical $N=2$ $W$ superalgebras, J. Math. Phys. 35 no. 5 (1994), 2570–2582. DOI MR Zbl
-
C. Kassel, Quantum groups, Graduate Texts in Mathematics 155, Springer, New York, 1995. DOI MR Zbl
-
P. B. A. Lecomte and V. Y. Ovsienko, Cohomology of the vector fields Lie algebra and modules of differential operators on a smooth manifold, Compositio Math. 124 no. 1 (2000), 95–110. DOI MR Zbl
-
A. Nijenhuis and R. W. Richardson, Jr., Deformations of homomorphisms of Lie groups and Lie algebras, Bull. Amer. Math. Soc. 73 (1967), 175–179. DOI MR Zbl
-
B. F. Nizar, M. Abdaoui, and R. Hamza, On $\mathfrak{osp}(1|2)$-relative cohomology of the Lie superalgebra of contact vector fields on $\mathbb{R}^{1|1}$, Int. J. Geom. Methods Mod. Phys. 14 no. 2 (2017), Article no. 1750022. DOI MR Zbl
-
B. F. Nizar, M. Abdaoui, and R. Hamza, On $\mathfrak{osp}(2|2)$-relative cohomology of the Lie superalgebra of contact vector fields and deformations, J. Geom. Phys. 125 (2018), 33–48. DOI MR Zbl
-
V. Yu. Ovsienko and C. Roger, Extensions of the Virasoro group and the Virasoro algebra by modules of tensor densities on $S^1$, Funct. Anal. Appl. 30 no. 4 (1996), 290–291; translation from Funkts. Anal. Prilozh. 30 no. 4 (1996), 86–88. DOI MR Zbl
|