Frobenius property for fusion categories of dimension 120
Li Dai
Volume 68, no. 2
(2025),
pp. 395–403
Published online (final version): August 18, 2025
https://doi.org/10.33044/revuma.4390
Download PDF
Abstract
We prove that fusion categories of Frobenius–Perron dimensions 120 are of Frobenius type.
Combining this with known results in the literature, we get that all weakly integral
fusion categories of Frobenius–Perron dimension less than 126 are of Frobenius type.
References
-
J. Dong, S. Natale, and L. Vendramin, Frobenius property for fusion categories of small integral dimension, J. Algebra Appl. 14 no. 2 (2015), article no. 1550011. DOI MR Zbl
-
V. Drinfeld, S. Gelaki, D. Nikshych, and V. Ostrik, On braided fusion categories. I, Selecta Math. (N.S.) 16 no. 1 (2010), 1–119. DOI MR Zbl
-
P. Etingof, S. Gelaki, D. Nikshych, and V. Ostrik, Tensor categories, Mathematical Surveys and Monographs 205, American Mathematical Society, Providence, RI, 2015. DOI MR Zbl
-
P. Etingof, D. Nikshych, and V. Ostrik, On fusion categories, Ann. of Math. (2) 162 no. 2 (2005), 581–642. DOI MR Zbl
-
P. Etingof, D. Nikshych, and V. Ostrik, Weakly group-theoretical and solvable fusion categories, Adv. Math. 226 no. 1 (2011), 176–205. DOI MR Zbl
-
S. Gelaki and D. Nikshych, Nilpotent fusion categories, Adv. Math. 217 no. 3 (2008), 1053–1071. DOI MR Zbl
-
I. Kaplansky, Bialgebras, Lecture Notes in Mathematics, University of Chicago, Department of Mathematics, Chicago, IL, 1975. MR Zbl
-
W. D. Nichols and M. B. Richmond, The Grothendieck group of a Hopf algebra, J. Pure Appl. Algebra 106 no. 3 (1996), 297–306. DOI MR Zbl
-
V. Ostrik, Pivotal fusion categories of rank 3, Mosc. Math. J. 15 no. 2 (2015), 373–396. DOI MR Zbl