Revista de la
Unión Matemática Argentina
Frobenius property for fusion categories of dimension 120
Li Dai

Volume 68, no. 2 (2025), pp. 395–403    

Published online (final version): August 18, 2025

https://doi.org/10.33044/revuma.4390

Download PDF

Abstract

We prove that fusion categories of Frobenius–Perron dimensions 120 are of Frobenius type. Combining this with known results in the literature, we get that all weakly integral fusion categories of Frobenius–Perron dimension less than 126 are of Frobenius type.

References

  1. J. Dong, S. Natale, and L. Vendramin, Frobenius property for fusion categories of small integral dimension, J. Algebra Appl. 14 no. 2 (2015), article no. 1550011.  DOI  MR  Zbl
  2. V. Drinfeld, S. Gelaki, D. Nikshych, and V. Ostrik, On braided fusion categories. I, Selecta Math. (N.S.) 16 no. 1 (2010), 1–119.  DOI  MR  Zbl
  3. P. Etingof, S. Gelaki, D. Nikshych, and V. Ostrik, Tensor categories, Mathematical Surveys and Monographs 205, American Mathematical Society, Providence, RI, 2015.  DOI  MR  Zbl
  4. P. Etingof, D. Nikshych, and V. Ostrik, On fusion categories, Ann. of Math. (2) 162 no. 2 (2005), 581–642.  DOI  MR  Zbl
  5. P. Etingof, D. Nikshych, and V. Ostrik, Weakly group-theoretical and solvable fusion categories, Adv. Math. 226 no. 1 (2011), 176–205.  DOI  MR  Zbl
  6. S. Gelaki and D. Nikshych, Nilpotent fusion categories, Adv. Math. 217 no. 3 (2008), 1053–1071.  DOI  MR  Zbl
  7. I. Kaplansky, Bialgebras, Lecture Notes in Mathematics, University of Chicago, Department of Mathematics, Chicago, IL, 1975.  MR  Zbl
  8. W. D. Nichols and M. B. Richmond, The Grothendieck group of a Hopf algebra, J. Pure Appl. Algebra 106 no. 3 (1996), 297–306.  DOI  MR  Zbl
  9. V. Ostrik, Pivotal fusion categories of rank 3, Mosc. Math. J. 15 no. 2 (2015), 373–396.  DOI  MR  Zbl