Current volume
Past volumes
1952-1968 Revista de la Unión Matemática Argentina y de la Asociación Física Argentina
1944-1951 Revista de la Unión Matemática Argentina; órgano de la Asociación Física Argentina
1936-1944
|
The conjecture on distance-balancedness of generalized Petersen graphs holds when internal edges have jumps 3 or 4
Gang Ma, Jianfeng Wang, and Sandi Klavžar
Volume 68, no. 2
(2025),
pp. 703–733
Published online (final version): October 8, 2025
https://doi.org/10.33044/revuma.4824
Download PDF
Abstract
A connected graph $G$ with $\mathrm{diam}(G) \ge \ell$ is $\ell$-distance-balanced if
$|W_{xy}|=|W_{yx}|$ for every $x,y\in V(G)$ with $d_{G}(x,y)=\ell$, where $W_{xy}$ is the
set of vertices of $G$ that are closer to $x$ than to $y$. Miklavič and Šparl [Discrete
Appl. Math. 244 (2018), 143–154] conjectured that if $n>n_k$, where $n_k=11$ if $k=2$,
$n_k=(k+1)^2$ if $k$ is odd, and $n_k=k(k+2)$ if $k\ge 4$ is even, then the generalized
Petersen graph $\mathrm{GP}(n,k)$ is not $\ell$-distance-balanced for any $1\le \ell <
\mathrm{diam}(\mathrm{GP}(n,k))$. In the seminal paper, the conjecture was verified for
$k=2$. In this paper we prove that the conjecture holds for $k=3$ and for $k=4$.
References
-
A. Abiad, B. Brimkov, A. Erey, L. Leshock, X. Martínez-Rivera, S. O, S.-Y. Song, and J. Williford, On the Wiener index, distance cospectrality and transmission-regular graphs, Discrete Appl. Math. 230 (2017), 1–10. DOI MR Zbl
-
A. Ali and T. Došlić, Mostar index: Results and perspectives, Appl. Math. Comput. 404 (2021), Paper No. 126245. DOI MR Zbl
-
K. Balakrishnan, B. Brešar, M. Changat, S. Klavžar, A. Vesel, and P. Žigert Pleteršek, Equal opportunity networks, distance-balanced graphs, and Wiener game, Discrete Optim. 12 (2014), 150–154. DOI MR Zbl
-
K. Balakrishnan, M. Changat, I. Peterin, S. Špacapan, P. Šparl, and A. R. Subhamathi, Strongly distance-balanced graphs and graph products, European J. Combin. 30 no. 5 (2009), 1048–1053. DOI MR Zbl
-
S. Cabello and P. Lukšič, The complexity of obtaining a distance-balanced graph, Electron. J. Combin. 18 no. 1 (2011), Paper 49. DOI MR Zbl
-
M. Cavaleri and A. Donno, Distance-balanced graphs and travelling salesman problems, Ars Math. Contemp. 19 no. 2 (2020), 311–324. DOI MR Zbl
-
B. Fernández and A. Hujdurović, On some problems regarding distance-balanced graphs, European J. Combin. 106 (2022), Paper No. 103593. DOI MR Zbl
-
B. Fernández, Š. Miklavič, and S. Penjić, On certain regular nicely distance-balanced graphs, Rev. Un. Mat. Argentina 65 no. 1 (2023), 165–185. DOI MR Zbl
-
B. Frelih, Različni vidiki povezavne regularnosti v grafih, Ph.D. thesis, University of Primorska, Koper, 2014. Available at https://hdl.handle.net/20.500.12556/RUP-8929.
-
B. Frelih and Š. Miklavič, On 2-distance-balanced graphs, Ars Math. Contemp. 15 no. 1 (2018), 81–95. DOI MR Zbl
-
K. Handa, Bipartite graphs with balanced $(a,b)$-partitions, Ars Combin. 51 (1999), 113–119. MR Zbl
-
A. Ilić, S. Klavžar, and M. Milanović, On distance-balanced graphs, European J. Combin. 31 no. 3 (2010), 733–737. DOI MR Zbl
-
J. Jerebic, S. Klavžar, and D. F. Rall, Distance-balanced graphs, Ann. Comb. 12 no. 1 (2008), 71–79. DOI MR Zbl
-
J. Jerebic, S. Klavžar, and G. Rus, On $\ell$-distance-balanced product graphs, Graphs Combin. 37 no. 1 (2021), 369–379. DOI MR Zbl
-
K. Kutnar, A. Malnič, D. Marušič, and Š. Miklavič, Distance-balanced graphs: Symmetry conditions, Discrete Math. 306 no. 16 (2006), 1881–1894. DOI MR Zbl
-
K. Kutnar, A. Malnič, D. Marušič, and Š. Miklavič, The strongly distance-balanced property of the generalized Petersen graphs, Ars Math. Contemp. 2 no. 1 (2009), 41–47. DOI MR Zbl
-
K. Kutnar and Š. Miklavič, Nicely distance-balanced graphs, European J. Combin. 39 (2014), 57–67. DOI MR Zbl
-
G. Ma, J. Wang, and S. Klavžar, On distance-balanced generalized Petersen graphs, Ann. Comb. 28 no. 1 (2024), 329–349. DOI MR Zbl
-
Š. Miklavič and P. Šparl, On the connectivity of bipartite distance-balanced graphs, European J. Combin. 33 no. 2 (2012), 237–247. DOI MR Zbl
-
Š. Miklavič and P. Šparl, $\ell$-distance-balanced graphs, Discrete Appl. Math. 244 (2018), 143–154. DOI MR Zbl
-
R. Yang, X. Hou, N. Li, and W. Zhong, A note on the distance-balanced property of generalized Petersen graphs, Electron. J. Combin. 16 no. 1 (2009), Note 33. DOI MR Zbl
|