Current volume
Past volumes
1952-1968 Revista de la Unión Matemática Argentina y de la Asociación Física Argentina
1944-1951 Revista de la Unión Matemática Argentina; órgano de la Asociación Física Argentina
1936-1944
|
Clones from comonoids
Ulrich Krähmer and Myriam Mahaman
Volume 68, no. 2
(2025),
pp. 369–394
Published online (final version): July 16, 2025
https://doi.org/10.33044/revuma.3951
Download PDF
Abstract
We revisit the fact that the cocommutative comonoids in a symmetric monoidal category form
the best possible approximation by a cartesian category, now considering the case where
the original category is only braided monoidal. This leads to the question of when the
endomorphism operad of a comonoid is a clone (a Lawvere theory). By giving an explicit
example, we prove that this does not imply that the comonoid is cocommutative.
References
-
A. Akhvlediani, Relating types in categorical universal algebra, Ph.D. thesis, University of Oxford, 2011.
-
J. C. Baez, Hochschild homology in a braided tensor category, Trans. Amer. Math. Soc. 344 no. 2 (1994), 885–906. DOI MR Zbl
-
R. Blackwell, G. M. Kelly, and A. J. Power, Two-dimensional monad theory, J. Pure Appl. Algebra 59 no. 1 (1989), 1–41. DOI MR Zbl
-
P.-L. Curien, Operads, clones, and distributive laws, in Operads and universal algebra, Nankai Ser. Pure Appl. Math. Theoret. Phys. 9, World Scientific, Hackensack, NJ, 2012, pp. 25–49. DOI MR Zbl
-
T. Fox, Coalgebras and Cartesian categories, Comm. Algebra 4 no. 7 (1976), 665–667. DOI MR Zbl
-
M. R. Gould, Coherence for categorified operadic theories, Ph.D. thesis, University of Glasgow, 2008. Available at https://theses.gla.ac.uk/id/eprint/689.
-
R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics 52, Springer, New York-Heidelberg, 1977. MR Zbl
-
C. Heunen and J. Vicary, Categories for quantum theory: An introduction, Oxford Graduate Texts in Mathematics 28, Oxford University Press, Oxford, 2019. DOI MR Zbl
-
M. Hyland, Towards a notion of lambda monoid, in Proceedings of the Workshop on Algebra, Coalgebra and Topology (WACT 2013), Electron. Notes Theor. Comput. Sci. 303, Elsevier, Amsterdam, 2014, pp. 59–77. DOI MR Zbl
-
G. M. Kelly, An abstract approach to coherence, in Coherence in categories, Lecture Notes in Math. 281, Springer, Berlin-New York, 1972, pp. 106–147. DOI MR Zbl
-
G. M. Kelly, Many-variable functorial calculus. I, in Coherence in categories, Lecture Notes in Math. 281, Springer, Berlin-New York, 1972, pp. 66–105. DOI MR Zbl
-
S. Kerkhoff, R. Pöschel, and F. M. Schneider, A short introduction to clones, in Proceedings of the Workshop on Algebra, Coalgebra and Topology (WACT 2013), Electron. Notes Theor. Comput. Sci. 303, Elsevier, Amsterdam, 2014, pp. 107–120. DOI MR Zbl
-
F. W. Lawvere, Functorial semantics of algebraic theories and some algebraic problems in the context of functorial semantics of algebraic theories, Repr. Theory Appl. Categ. no. 5 (2004), 1–121. MR Zbl Available at http://www.emis.de/journals/TAC/reprints/articles/5/tr5abs.html.
-
T. Leinster, Higher operads, higher categories, London Math. Soc. Lecture Note Ser. 298, Cambridge University Press, Cambridge, 2004. DOI MR Zbl
-
J.-L. Loday, Cyclic homology, second ed., Grundlehren Math. Wiss. 301, Springer, Berlin, 1998. DOI MR Zbl
-
J.-L. Loday and B. Vallette, Algebraic operads, Grundlehren Math. Wiss. 346, Springer, Heidelberg, 2012. DOI MR Zbl
-
M. Shulman, Categorical logic from a categorical point of view, 2016. Available at https://mikeshulman.github.io/catlog/catlog.pdf, accessed July 16, 2025.
-
M. Shulman, P. L. Lumsdaine, and J. A. Gross, Notes on higher categories and categorical logic, lecture notes, August 2016. Available at https://docslib.org/doc/8484804/notes-on-higher-categories-and-categorical-logic, accessed July 16, 2025.
-
S. N. Tronin, Abstract clones and operads, Sibirsk. Mat. Zh. 43 no. 4 (2002), 924–936; translation in Siberian Math. J. 43 no. 4 (2002), 746–755. DOI MR Zbl
-
C. A. Weibel, An introduction to homological algebra, Cambridge Stud. Adv. Math. 38, Cambridge University Press, Cambridge, 1994. DOI MR Zbl
|