Current volume
Past volumes
1952-1968 Revista de la Unión Matemática Argentina y de la Asociación Física Argentina
1944-1951 Revista de la Unión Matemática Argentina; órgano de la Asociación Física Argentina
1936-1944
|
Linear functionals and $\Delta$-coherent pairs of the second kind
Diego Dominici and Francisco Marcellán
Volume 68, no. 2
(2025),
pp. 405–422
Published online (final version): August 18, 2025
https://doi.org/10.33044/revuma.4349
Download PDF
Abstract
We classify all the $\Delta$-coherent pairs of measures of the second kind on the real
line. We obtain five cases, corresponding to all the families of discrete semiclassical
orthogonal polynomials of class $s\leq1$.
References
-
I. Area, E. Godoy, and F. Marcellán, Classification of all $\Delta$-coherent pairs, Integral Transform. Spec. Funct. 9 no. 1 (2000), 1–18. DOI MR Zbl
-
I. Area, E. Godoy, and F. Marcellán, Inner products involving differences: The Meixner–Sobolev polynomials, J. Difference Equ. Appl. 6 no. 1 (2000), 1–31. DOI MR Zbl
-
I. Area, E. Godoy, and F. Marcellán, $\Delta$-coherent pairs and orthogonal polynomials of a discrete variable, Integral Transforms Spec. Funct. 14 no. 1 (2003), 31–57. DOI MR Zbl
-
I. Area, E. Godoy, F. Marcellán, and J. J. Moreno-Balcázar, Ratio and Plancherel–Rotach asymptotics for Meixner–Sobolev orthogonal polynomials, J. Comput. Appl. Math. 116 no. 1 (2000), 63–75. DOI MR Zbl
-
I. Area, E. Godoy, F. Marcellán, and J. J. Moreno-Balcázar, $\Delta$-Sobolev orthogonal polynomials of Meixner type: Asymptotics and limit relation, J. Comput. Appl. Math. 178 no. 1-2 (2005), 21–36. DOI MR Zbl
-
T. S. Chihara, An introduction to orthogonal polynomials, Mathematics and its Applications 13, Gordon and Breach, New York-London-Paris, 1978. MR Zbl
-
A. M. Delgado and F. Marcellán, Companion linear functionals and Sobolev inner products: A case study, Methods Appl. Anal. 11 no. 2 (2004), 237–266. DOI MR Zbl
-
D. Dominici, Recurrence relations for the moments of discrete semiclassical orthogonal polynomials, J. Class. Anal. 20 no. 2 (2022), 143–180. DOI MR Zbl
-
D. Dominici and F. Marcellán, Discrete semiclassical orthogonal polynomials of class one, Pacific J. Math. 268 no. 2 (2014), 389–411. DOI MR Zbl
-
D. Dominici and F. Marcellán, Discrete semiclassical orthogonal polynomials of class 2, in Orthogonal polynomials: Current trends and applications, SEMA SIMAI Springer Ser. 22, Springer, Cham, 2021, pp. 103–169. DOI MR Zbl
-
D. Dominici and J. J. Moreno-Balcázar, Asymptotic analysis of a family of Sobolev orthogonal polynomials related to the generalized Charlier polynomials, J. Approx. Theory 293 (2023), Paper no. 105918. DOI MR Zbl
-
A. J. Durán, Christoffel transform of classical discrete measures and invariance of determinants of classical and classical discrete polynomials, J. Math. Anal. Appl. 503 no. 2 (2021), Paper no. 125306. DOI MR Zbl
-
A. J. Durán and M. D. de la Iglesia, Constructing bispectral orthogonal polynomials from the classical discrete families of Charlier, Meixner and Krawtchouk, Constr. Approx. 41 no. 1 (2015), 49–91. DOI MR Zbl
-
L. Fernández, F. Marcellán, T. E. Pérez, and M. A. Piñar, Sobolev orthogonal polynomials and spectral methods in boundary value problems, Appl. Numer. Math. 200 (2024), 254–272. DOI MR Zbl
-
A. G. García, F. Marcellán, and L. Salto, A distributional study of discrete classical orthogonal polynomials, J. Comput. Appl. Math. 57 no. 1-2 (1995), 147–162. DOI MR Zbl
-
J. C. García-Ardila, F. Marcellán, and M. E. Marriaga, From standard orthogonal polynomials to Sobolev orthogonal polynomials: The role of semiclassical linear functionals, in Orthogonal polynomials, Tutor. Sch. Workshops Math. Sci., Birkhäuser, Cham, 2020, pp. 245–292. DOI MR Zbl
-
M. Hancco Suni, G. A. Marcato, F. Marcellán, and A. Sri Ranga, Coherent pairs of moment functionals of the second kind and associated orthogonal polynomials and Sobolev orthogonal polynomials, J. Math. Anal. Appl. 525 no. 1 (2023), Paper no. 127118. DOI MR Zbl
-
A. Iserles, P. E. Koch, S. P. Nørsett, and J. M. Sanz-Serna, On polynomials orthogonal with respect to certain Sobolev inner products, J. Approx. Theory 65 no. 2 (1991), 151–175. DOI MR Zbl
-
A. Iserles, J. M. Sanz-Serna, P. E. Koch, and S. P. Nørsett, Orthogonality and approximation in a Sobolev space, in Algorithms for approximation, II (Shrivenham, 1988), Chapman and Hall, London, 1990, pp. 117–124. MR Zbl
-
R. Koekoek, P. A. Lesky, and R. F. Swarttouw, Hypergeometric orthogonal polynomials and their $q$-analogues, Springer Monogr. Math., Springer, Berlin, 2010. DOI MR Zbl
-
F. Marcellán, T. E. Pérez, and M. A. Piñar, Orthogonal polynomials on weighted Sobolev spaces: The semiclassical case, Ann. Numer. Math. 2 no. 1-4 (1995), 93–122. MR Zbl
-
F. Marcellán and J. Petronilho, Orthogonal polynomials and coherent pairs: The classical case, Indag. Math. (N.S.) 6 no. 3 (1995), 287–307. DOI MR Zbl
-
F. Marcellán and L. Salto, Discrete semi-classical orthogonal polynomials, J. Difference Equ. Appl. 4 no. 5 (1998), 463–496. DOI MR Zbl
-
F. Marcellán and Y. Xu, On Sobolev orthogonal polynomials, Expo. Math. 33 no. 3 (2015), 308–352. DOI MR Zbl
-
H. G. Meijer, Determination of all coherent pairs, J. Approx. Theory 89 no. 3 (1997), 321–343. DOI MR Zbl
-
J. J. Moreno-Balcázar, $\Delta$-Meixner–Sobolev orthogonal polynomials: Mehler–Heine type formula and zeros, J. Comput. Appl. Math. 284 (2015), 228–234. DOI MR Zbl
-
A. F. Nikiforov, S. K. Suslov, and V. B. Uvarov, Classical orthogonal polynomials of a discrete variable, Springer Ser. Comput. Phys., Springer, Berlin, 1991. DOI MR Zbl
-
A. Ronveaux and L. Salto, Discrete orthogonal polynomials—polynomial modification of a classical functional, J. Difference Equ. Appl. 7 no. 3 (2001), 323–344. DOI MR Zbl
-
A. Zhedanov, Rational spectral transformations and orthogonal polynomials, J. Comput. Appl. Math. 85 no. 1 (1997), 67–86. DOI MR Zbl
|