Current volume
Past volumes
1952-1968 Revista de la Unión Matemática Argentina y de la Asociación Física Argentina
1944-1951 Revista de la Unión Matemática Argentina; órgano de la Asociación Física Argentina
1936-1944
|
Finite groups in which some maximal subgroups are MNP-groups
Pengfei Guo and Huaguo Shi
Volume 68, no. 2
(2025),
pp. 423–435
Published online (final version): August 19, 2025
https://doi.org/10.33044/revuma.4266
Download PDF
Abstract
A finite group $G$ is called an MNP-group if all maximal subgroups of the Sylow subgroups
of $G$ are normal in $G$. The aim of this paper is to give a necessary and sufficient
condition for a group to be an MNP-group, characterize the structure of finite groups
whose maximal subgroups (respectively, maximal subgroups of even order)
are all MNP-groups, and determine finite non-abelian simple groups
whose second maximal subgroups (respectively, maximal subgroups of even order) are all MNP-groups.
References
-
A. Ballester-Bolinches, R. Esteban-Romero, and D. J. S. Robinson, On finite minimal non-nilpotent groups, Proc. Amer. Math. Soc. 133 no. 12 (2005), 3455–3462. DOI MR Zbl
-
A. Ballester-Bolinches and R. Esteban-Romero, On minimal non-supersoluble groups, Rev. Mat. Iberoam. 23 no. 1 (2007), 127–142. DOI MR Zbl
-
A. Ballester-Bolinches and L. M. Ezquerro, Classes of finite groups, Mathematics and Its Applications (Springer) 584, Springer, Dordrecht, 2006. DOI MR Zbl
-
K. Doerk, Minimal nicht überauflösbare, endliche Gruppen, Math. Z. 91 (1966), 198–205. DOI MR Zbl
-
D. Gorenstein, Finite groups, Harper & Row, New York-London, 1968. MR Zbl
-
P. Guo and X. Guo, On minimal non-MSN-groups, Front. Math. China 6 no. 5 (2011), 847–854. DOI MR Zbl
-
B. Huppert, Endliche Gruppen I, Grundlehren Mathe. Wiss. 134, Springer, Berlin-New York, 1967. DOI MR Zbl
-
O. H. King, The subgroup structure of finite classical groups in terms of geometric configurations, in Surveys in combinatorics 2005, London Math. Soc. Lecture Note Ser. 327, Cambridge University Press, Cambridge, 2005, pp. 29–56. DOI MR Zbl
-
J. Lu, X. Zhang, W. Meng, and B. Zhang, Finite groups with some $SB$-subgroups, Comm. Algebra 51 no. 1 (2023), 161–167. DOI MR Zbl
-
W. Meng, Y. Deng, and J. Lu, Finite groups with $S$-quasinormal subgroups, Comm. Algebra 49 no. 6 (2021), 2547–2555. DOI MR Zbl
-
D. J. S. Robinson, A course in the theory of groups, second ed., Graduate Texts in Mathematics 80, Springer, New York-Berlin, 1996. DOI MR Zbl
-
S. Srinivasan, Two sufficient conditions for supersolvability of finite groups, Israel J. Math. 35 no. 3 (1980), 210–214. DOI MR Zbl
-
J. G. Thompson, Nonsolvable finite groups all of whose local subgroups are solvable, Bull. Amer. Math. Soc. 74 (1968), 383–437. DOI MR Zbl
-
G. L. Walls, Groups with maximal subgroups of Sylow subgroups normal, Israel J. Math. 43 no. 2 (1982), 166–168. DOI MR Zbl
|