Current volume
Past volumes
1952-1968 Revista de la Unión Matemática Argentina y de la Asociación Física Argentina
1944-1951 Revista de la Unión Matemática Argentina; órgano de la Asociación Física Argentina
1936-1944
|
A canonical distribution on isoparametric submanifolds III
Cristián U. Sánchez
Volume 68, no. 2
(2025),
pp. 437–458
Published online (final version): September 3, 2025
https://doi.org/10.33044/revuma.3993
Download PDF
Abstract
The present paper is devoted to showing that on every compact, connected homogeneous
isoparametric submanifold $M=G/K$ of codimension $h\geq2$ in a Euclidean space, there
exist canonical distributions which are generated by the compact symmetric spaces
associated to $M$ (i.e., those corresponding to the group $G$). The central objective is
to show that all these distributions are bracket generating of step 2. To that end,
formulae that complement those in the first article of this series (Rev. Un. Mat.
Argentina 61, no. 1 (2020), 113–130) are obtained.
References
-
J. Berndt, S. Console, and C. Olmos, Submanifolds and holonomy, second ed., Monogr. Res. Notes Math., CRC Press, Boca Raton, FL, 2016. DOI MR Zbl
-
F. E. Burstall and J. H. Rawnsley, Twistor theory for Riemannian symmetric spaces, Lecture Notes in Math. 1424, Springer, Berlin, 1990. DOI MR Zbl
-
D. Ferus, Symmetric submanifolds of Euclidean space, Math. Ann. 247 no. 1 (1980), 81–93. DOI MR Zbl
-
H. Freudenthal and H. de Vries, Linear Lie groups, Pure and Applied Mathematics 35, Academic Press, New York-London, 1969. MR Zbl
-
S. Helgason, Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics 80, Academic Press, New York-London, 1978. MR Zbl
-
J. E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics 9, Springer, New York-Berlin, 1972. MR Zbl
-
H. Kammeyer, An explicit rational structure for real semisimple Lie algebras, J. Lie Theory 24 no. 2 (2014), 307–319. MR Zbl
-
A. W. Knapp, Lie groups beyond an introduction, second ed., Progress in Mathematics 140, Birkhäuser, Boston, MA, 2002. MR Zbl
-
C. U. Sánchez, A canonical distribution on isoparametric submanifolds I, Rev. Un. Mat. Argentina 61 no. 1 (2020), 113–130. DOI MR Zbl
-
C. U. Sánchez, A canonical distribution on isoparametric submanifolds II, Rev. Un. Mat. Argentina 62 no. 2 (2021), 491–513. DOI MR Zbl
-
C. U. Sánchez, The lemmata in “Canonical distribution on isoparametric submanifolds III”, 2023. Available at https://web.archive.org/web/20250903163113/https://ciem.conicet.unc.edu.ar/wp-content/uploads/sites/78/2023/03/OTRA-A.pdf.
-
F. W. Warner, Foundations of differentiable manifolds and Lie groups, Scott, Foresman, and Co., Glenview, Ill.-London, 1971. MR Zbl
|