Revista de la
Unión Matemática Argentina
A canonical distribution on isoparametric submanifolds III
Cristián U. Sánchez

Volume 68, no. 2 (2025), pp. 437–458    

Published online (final version): September 3, 2025

https://doi.org/10.33044/revuma.3993

Download PDF

Abstract

The present paper is devoted to showing that on every compact, connected homogeneous isoparametric submanifold $M=G/K$ of codimension $h\geq2$ in a Euclidean space, there exist canonical distributions which are generated by the compact symmetric spaces associated to $M$ (i.e., those corresponding to the group $G$). The central objective is to show that all these distributions are bracket generating of step 2. To that end, formulae that complement those in the first article of this series (Rev. Un. Mat. Argentina 61, no. 1 (2020), 113–130) are obtained.

References

  1. J. Berndt, S. Console, and C. Olmos, Submanifolds and holonomy, second ed., Monogr. Res. Notes Math., CRC Press, Boca Raton, FL, 2016.  DOI  MR  Zbl
  2. F. E. Burstall and J. H. Rawnsley, Twistor theory for Riemannian symmetric spaces, Lecture Notes in Math. 1424, Springer, Berlin, 1990.  DOI  MR  Zbl
  3. D. Ferus, Symmetric submanifolds of Euclidean space, Math. Ann. 247 no. 1 (1980), 81–93.  DOI  MR  Zbl
  4. H. Freudenthal and H. de Vries, Linear Lie groups, Pure and Applied Mathematics 35, Academic Press, New York-London, 1969.  MR  Zbl
  5. S. Helgason, Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics 80, Academic Press, New York-London, 1978.  MR  Zbl
  6. J. E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics 9, Springer, New York-Berlin, 1972.  MR  Zbl
  7. H. Kammeyer, An explicit rational structure for real semisimple Lie algebras, J. Lie Theory 24 no. 2 (2014), 307–319.  MR  Zbl
  8. A. W. Knapp, Lie groups beyond an introduction, second ed., Progress in Mathematics 140, Birkhäuser, Boston, MA, 2002.  MR  Zbl
  9. C. U. Sánchez, A canonical distribution on isoparametric submanifolds I, Rev. Un. Mat. Argentina 61 no. 1 (2020), 113–130.  DOI  MR  Zbl
  10. C. U. Sánchez, A canonical distribution on isoparametric submanifolds II, Rev. Un. Mat. Argentina 62 no. 2 (2021), 491–513.  DOI  MR  Zbl
  11. C. U. Sánchez, The lemmata in “Canonical distribution on isoparametric submanifolds III”, 2023. Available at https://web.archive.org/web/20250903163113/https://ciem.conicet.unc.edu.ar/wp-content/uploads/sites/78/2023/03/OTRA-A.pdf.
  12. F. W. Warner, Foundations of differentiable manifolds and Lie groups, Scott, Foresman, and Co., Glenview, Ill.-London, 1971.  MR  Zbl