Current volume
Past volumes
1952-1968 Revista de la Unión Matemática Argentina y de la Asociación Física Argentina
1944-1951 Revista de la Unión Matemática Argentina; órgano de la Asociación Física Argentina
1936-1944
|
On the moduli space of left-invariant metrics on the cotangent bundle of the Heisenberg group
Tijana Šukilović, Srdjan Vukmirović, and Neda Bokan
Volume 68, no. 2
(2025),
pp. 485–518
Published online (final version): October 8, 2025
https://doi.org/10.33044/revuma.3426
Download PDF
Abstract
The focus of the paper is on the study of the moduli space of left-invariant pseudo-
Riemannian metrics on the cotangent bundle of the Heisenberg group. We use algebraic
approach to obtain orbits of the automorphism group acting in a natural way on the space
of left invariant metrics. However, geometric tools such as the classification of
hyperbolic plane conics are often needed. For the metrics obtained by the classification,
we study geometric properties: curvature, Ricci tensor, sectional curvature, holonomy, and
parallel vector fields. The classification of algebraic Ricci solitons is also presented,
as well as the classification of pseudo-Kähler and pp-wave metrics. We obtain description
of parallel symmetric tensors for each metric and show that they are derived from parallel
vector fields. Finally, we study the totally geodesic subalgebras and show that for each
subalgebra of the observed algebra there is a metric which makes it totally geodesic.
References
-
D. V. Alekseevskiĭ, Homogeneous Riemannian spaces of negative curvature (in Russian), Mat. Sb. (N.S.) 96(138) no. 1 (1975), 93–117, English translation: Math. USSR Sb. 25 no. 1 (1975), 87–109. MR Zbl
-
D. Alekseevsky, J. Grabowski, G. Marmo, and P. W. Michor, Poisson structures on the cotangent bundle of a Lie group or a principal bundle and their reductions, J. Math. Phys. 35 no. 9 (1994), 4909–4927. DOI MR Zbl
-
C. Benson and C. S. Gordon, Kähler and symplectic structures on nilmanifolds, Topology 27 no. 4 (1988), 513–518. DOI MR Zbl
-
L. Bérard-Bergery, Les espaces homogènes riemanniens de dimension 4, in Géométrie riemannienne en dimension 4, Sémin. Arthur Besse, Paris 1978/79, CEDIC/Fernand Nathan, Paris, 1981, pp. 40–60. MR Zbl
-
N. Bokan, T. Šukilović, and S. Vukmirović, Lorentz geometry of 4-dimensional nilpotent Lie groups, Geom. Dedicata 177 (2015), 83–102. DOI MR Zbl
-
N. Bokan, T. Šukilović, and S. Vukmirović, Geodesically equivalent metrics on homogenous spaces, Czechoslovak Math. J. 69(144) no. 4 (2019), 945–954. DOI MR Zbl
-
G. Cairns, A. Hinić Galić, and Y. Nikolayevsky, Totally geodesic subalgebras of nilpotent Lie algebras, J. Lie Theory 23 no. 4 (2013), 1023–1049. MR Zbl
-
G. Calvaruso and A. Zaeim, Four-dimensional Lorentzian Lie groups, Differential Geom. Appl. 31 no. 4 (2013), 496–509. DOI MR Zbl
-
R. Campoamor-Stursberg and G. P. Ovando, Invariant complex structures on tangent and cotangent Lie groups of dimension six, Osaka J. Math. 49 no. 2 (2012), 489–513. MR Zbl Available at http://projecteuclid.org/euclid.ojm/1340197936.
-
D. Conti, V. del Barco, and F. A. Rossi, Uniqueness of ad-invariant metrics, Tohoku Math. J. (2) 76 no. 3 (2024), 317–359. DOI MR Zbl
-
D. Conti and F. A. Rossi, Indefinite nilsolitons and Einstein solvmanifolds, J. Geom. Anal. 32 no. 3 (2022), Paper no. 88. DOI MR Zbl
-
L. A. Cordero, M. Fernández, A. Gray, and L. Ugarte, Nilpotent complex structures on compact nilmanifolds, Rend. Circ. Mat. Palermo (2) Suppl. no. 49 (1997), 83–100. MR Zbl
-
L. A. Cordero and P. E. Parker, Left-invariant Lorentzian metrics on 3-dimensional Lie groups, Rend. Mat. Appl. (7) 17 no. 1 (1997), 129–155. MR Zbl
-
H. S. M. Coxeter, Non-Euclidean geometry, sixth ed., MAA Spectrum, Mathematical Association of America, Washington, DC, 1998. MR Zbl
-
R. C. Decoste and L. Demeyer, Totally geodesic subalgebras in 2-step nilpotent Lie algebras, Rocky Mountain J. Math. 45 no. 5 (2015), 1425–1444. DOI MR Zbl
-
A. Diatta and A. Medina, Classical Yang–Baxter equation and left invariant affine geometry on Lie groups, Manuscripta Math. 114 no. 4 (2004), 477–486. DOI MR Zbl
-
V. G. Drinfelʹd, Hamiltonian structures on Lie groups, Lie bialgebras and the geometric meaning of classical Yang–Baxter equations (in Russian), Dokl. Akad. Nauk SSSR 268 no. 2 (1983), 285–287, English translation: Sov. Math. Dokl. 27 (1983), 68–71. MR Zbl
-
P. Eberlein, Geometry of 2-step nilpotent groups with a left invariant metric, Ann. Sci. École Norm. Sup. (4) 27 no. 5 (1994), 611–660. DOI MR Zbl
-
B. Feix, Hyperkähler metrics on cotangent bundles, J. Reine Angew. Math. 532 (2001), 33–46. DOI MR Zbl
-
A. Fino, M. Parton, and S. Salamon, Families of strong KT structures in six dimensions, Comment. Math. Helv. 79 no. 2 (2004), 317–340. DOI MR Zbl
-
K. Fladt, Die allgemeine Kegelschnittsgleichung in der ebenen hyperbolischen Geometrie, J. Reine Angew. Math. 197 (1957), 121–139. DOI MR Zbl
-
A. S. Galaev, How to find the holonomy algebra of a Lorentzian manifold, Lett. Math. Phys. 105 no. 2 (2015), 199–219. DOI MR Zbl
-
C. S. Gordon and E. N. Wilson, Isometry groups of Riemannian solvmanifolds, Trans. Amer. Math. Soc. 307 no. 1 (1988), 245–269. DOI MR Zbl
-
T. Hashinaga, H. Tamaru, and K. Terada, Milnor-type theorems for left-invariant Riemannian metrics on Lie groups, J. Math. Soc. Japan 68 no. 2 (2016), 669–684. DOI MR Zbl
-
S. Homolya and O. Kowalski, Simply connected two-step homogeneous nilmanifolds of dimension 5, Note Mat. 26 no. 1 (2006), 69–77. MR Zbl
-
G. R. Jensen, Homogeneous Einstein spaces of dimension four, J. Differential Geometry 3 (1969), 309–349. DOI MR Zbl
-
M. B. Karki and G. Thompson, Four-dimensional Einstein Lie groups, Differ. Geom. Dyn. Syst. 18 (2016), 43–57. MR Zbl
-
F. Klein, Vorlesungen über nicht-euklidische Geometrie, third ed., Grundlehren Math. Wiss. 26, Springer, Berlin, 1928. MR Zbl Available at https://eudml.org/doc/203477.
-
H. Kodama, A. Takahara, and H. Tamaru, The space of left-invariant metrics on a Lie group up to isometry and scaling, Manuscripta Math. 135 no. 1-2 (2011), 229–243. DOI MR Zbl
-
G. I. Kručkovič and A. S. Solodovnikov, Constant symmetric tensors in Riemannian spaces (in Russian), Izv. Vysš. Učebn. Zaved. Mat. 1959 no. 3(10) (1959), 147–158. MR Zbl
-
J. Lauret, Homogeneous nilmanifolds of dimensions 3 and 4, Geom. Dedicata 68 no. 2 (1997), 145–155. DOI MR Zbl
-
J. Lauret, Ricci soliton homogeneous nilmanifolds, Math. Ann. 319 no. 4 (2001), 715–733. DOI MR Zbl
-
H. Liebmann, Nichteuklidische Geometrie, G. J. Göschen, Leipzig, 1905. Zbl
-
L. Magnin, Complex structures on indecomposable 6-dimensional nilpotent real Lie algebras, Internat. J. Algebra Comput. 17 no. 1 (2007), 77–113. DOI MR Zbl
-
J. Milnor, Curvatures of left invariant metrics on Lie groups, Advances in Math. 21 no. 3 (1976), 293–329. DOI MR Zbl
-
V. V. Morozov, Classification of nilpotent Lie algebras of sixth order (in Russian), Izv. Vysš. Učebn. Zaved. Mat. 1958 no. 4(5) (1958), 161–171. MR Zbl
-
G. M. Mubarakzyanov, Classification of solvable Lie algebras of sixth order with a non-nilpotent basis element (in Russian), Izv. Vysš. Učebn. Zaved. Mat. 1963 no. 4(35) (1963), 104–116. MR Zbl
-
S. Reggiani and F. Vittone, The moduli space of left-invariant metrics of a class of six-dimensional nilpotent Lie groups, [v1] 2020, [v2] 2021. arXiv:2011.02854v2.
-
B. Rosenfeld, Geometry of Lie groups, Mathematics and its Applications 393, Kluwer Academic Publishers, Dordrecht, 1997. DOI MR Zbl
-
S. M. Salamon, Complex structures on nilpotent Lie algebras, J. Pure Appl. Algebra 157 no. 2-3 (2001), 311–333. DOI MR Zbl
-
N. Smolentsev, Canonical pseudo-Kähler metrics on six-dimensional nilpotent Lie groups (in Russian), Vestn. Kemerovsk. Gos. Univ. Ser. Mat. no. 3/1(47) (2011), 155–168, English translation available as arXiv:1310.5395.
-
W. E. Story, On non-Euclidean properties of conics, Amer. J. Math. 5 no. 1-4 (1882), 358–381. DOI MR Zbl
-
T. Šukilović, Geometric properties of neutral signature metrics on 4-dimensional nilpotent Lie groups, Rev. Un. Mat. Argentina 57 no. 1 (2016), 23–47. MR Zbl
-
T. Šukilović, Classification of left-invariant metrics on 4-dimensional solvable Lie groups, Theor. Appl. Mech. (Belgrade) 47 no. 2 (2020), 181–204. DOI Zbl
-
O. Tibssirte, Einstein Lorentzian solvable unimodular Lie groups, 2022. arXiv:2210.15717.
-
K. A. Umlauf, Über die Zusammensetzung der endlichen kontinuierlichen Transformationsgruppen insbesondre der Gruppen vom Range Null, Dissertation, Universität Leipzig, 1891.
-
S. Vukmirović, Classification of left-invariant metrics on the Heisenberg group, J. Geom. Phys. 94 (2015), 72–80. DOI MR Zbl
|