Current volume
Past volumes
1952-1968 Revista de la Unión Matemática Argentina y de la Asociación Física Argentina
1944-1951 Revista de la Unión Matemática Argentina; órgano de la Asociación Física Argentina
1936-1944
|
Regular automorphisms and Calogero–Moser families
Cédric Bonnafé
Volume 68, no. 2
(2025),
pp. 519–533
Published online (final version): October 8, 2025
https://doi.org/10.33044/revuma.3143
Download PDF
Abstract
We study the subvariety of fixed points of an automorphism of a Calogero–Moser space
induced by a regular element of finite order of the normalizer of the associated complex
reflection group $W$. We determine some of (and conjecturally all) the
${\mathbb{C}}^\times$-fixed points of its unique irreducible component of maximal
dimension in terms of the character table of $W$. This is inspired by the mysterious
relations between the geometry of Calogero–Moser spaces and unipotent representations of
finite reductive groups, which is the theme of another paper [Pure Appl. Math. Q. 21 no. 1
(2025), 131–200].
References
-
G. Bellamy, Generalized Calogero–Moser spaces and rational Cherednik algebras, Ph.D. thesis, University of Edinburgh, 2010. Available at http://hdl.handle.net/1842/4733.
-
C. Bonnafé, On the Calogero–Moser space associated with dihedral groups, Ann. Math. Blaise Pascal 25 no. 2 (2018), 265–298. DOI MR Zbl
-
C. Bonnafé, Automorphisms and symplectic leaves of Calogero–Moser spaces, J. Aust. Math. Soc. 115 no. 1 (2023), 26–57. DOI MR Zbl
-
C. Bonnafé, Calogero–Moser spaces vs unipotent representations, Pure Appl. Math. Q. 21 no. 1 (2025), 131–200. DOI MR Zbl
-
C. Bonnafé and R. Maksimau, Fixed points in smooth Calogero–Moser spaces, Ann. Inst. Fourier (Grenoble) 71 no. 2 (2021), 643–678. DOI MR Zbl
-
C. Bonnafé and R. Rouquier, Cherednik algebras and Calogero–Moser cells, [v1] 2017, [v3] 2022. arXiv:1708.09764v3 [math.RT].
-
C. Bonnafé and U. Thiel, Computational aspects of Calogero–Moser spaces, Selecta Math. (N.S.) 29 no. 5 (2023), Paper No. 79. DOI MR Zbl
-
M. Broué, Introduction to complex reflection groups and their braid groups, Lecture Notes in Math. 1988, Springer, Berlin, 2010. DOI MR Zbl
-
M. Broué, G. Malle, and J. Michel, Generic blocks of finite reductive groups, in Représentations unipotentes génériques et blocs des groupes réductifs finis, Astérisque no. 212, Société Mathématique de France, Paris, 1993, pp. 7–92. MR Zbl Available at https://www.numdam.org/book-part/AST_1993__212__7_0/.
-
M. Broué, G. Malle, and J. Michel, Split spetses for primitive reflection groups, Astérisque no. 359, Société Mathématique de France, Paris, 2014. MR Zbl
-
M. Broué and J. Michel, Sur certains éléments réguliers des groupes de Weyl et les variétés de Deligne–Lusztig associées, in Finite reductive groups (Luminy, 1994), Progr. Math. 141, Birkhäuser, Boston, MA, 1997, pp. 73–139. MR Zbl
-
P. Deligne and G. Lusztig, Representations of reductive groups over finite fields, Ann. of Math. (2) 103 no. 1 (1976), 103–161. DOI MR Zbl
-
P. Etingof and V. Ginzburg, Symplectic reflection algebras, Calogero–Moser space, and deformed Harish-Chandra homomorphism, Invent. Math. 147 no. 2 (2002), 243–348. DOI MR Zbl
-
M. Geck and N. Jacon, Representations of Hecke algebras at roots of unity, Algebra and Applications 15, Springer, London, 2011. DOI MR Zbl
-
M. Geck and G. Pfeiffer, Characters of finite Coxeter groups and Iwahori–Hecke algebras, London Math. Soc. Monogr. New Ser. 21, Oxford University Press, New York, 2000. MR Zbl
-
I. Gordon, Baby Verma modules for rational Cherednik algebras, Bull. London Math. Soc. 35 no. 3 (2003), 321–336. DOI MR Zbl
-
I. G. Gordon and M. Martino, Calogero–Moser space, restricted rational Cherednik algebras and two-sided cells, Math. Res. Lett. 16 no. 2 (2009), 255–262. DOI MR Zbl
-
I. M. Isaacs, Character theory of finite groups, Pure Appl. Math. 69, Academic Press, New York-London, 1976. MR Zbl
-
A. Lacabanne, On a conjecture about cellular characters for the complex reflection group $G(d, 1, n)$, Ann. Math. Blaise Pascal 27 no. 1 (2020), 37–64. DOI MR Zbl
-
G. Lusztig, Characters of reductive groups over a finite field, Ann. of Math. Stud. 107, Princeton University Press, Princeton, NJ, 1984. DOI MR Zbl
-
T. A. Springer, Regular elements of finite reflection groups, Invent. Math. 25 (1974), 159–198. DOI MR Zbl
|