Current volume
Past volumes
1952-1968 Revista de la Unión Matemática Argentina y de la Asociación Física Argentina
1944-1951 Revista de la Unión Matemática Argentina; órgano de la Asociación Física Argentina
1936-1944
|
Graded almost valuation rings
Fatima Zahra Guissi, Najib Mahdou, Ünsal Tekir, and Suat Koç
Volume 68, no. 2
(2025),
pp. 535–553
Published online (final version): October 8, 2025
https://doi.org/10.33044/revuma.4036
Download PDF
Abstract
Let $R=\bigoplus_{\alpha\in\Gamma}R_{\alpha}$ be a commutative ring graded by an arbitrary
torsionless monoid $\Gamma$. We say that $R$ is a graded almost valuation ring (gr AV-
ring) if for every two homogeneous elements $a,b$ of $R$, there exists a positive integer $n$
such that either $a^{n}$ divides $b^{n}$ (in $R$) or $b^{n}$ divides $a^{n}$. In this
paper, we introduce and study the graded version of the almost valuation ring which is a
generalization of gr-AVD to the context of arbitrary $\Gamma$-graded rings (with zero-
divisors). Next, we study the possible transfer of this property to the graded trivial
ring extension $A\ltimes E$. Our aim is to provide examples of new classes of
$\Gamma$-graded rings satisfying the above mentioned property.
References
-
M. M. Ali, Idealization and theorems of D. D. Anderson. II, Comm. Algebra 35 no. 9 (2007), 2767–2792. DOI MR Zbl
-
D. D. Anderson, K. R. Knopp, and R. L. Lewin, Almost Bézout domains. II, J. Algebra 167 no. 3 (1994), 547–556. DOI MR Zbl
-
D. D. Anderson and M. Winders, Idealization of a module, J. Commut. Algebra 1 no. 1 (2009), 3–56. DOI MR Zbl
-
D. D. Anderson and M. Zafrullah, Almost Bézout domains, J. Algebra 142 no. 2 (1991), 285–309. DOI MR Zbl
-
D. D. Anderson and M. Zafrullah, Almost Bézout domains. III, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 51(99) no. 1 (2008), 3–9. MR Zbl
-
A. Assarrar, N. Mahdou, Ü. Tekir, and S. Koç, On graded coherent-like properties in trivial ring extensions, Boll. Unione Mat. Ital. 15 no. 3 (2022), 437–449. DOI MR Zbl
-
A. Badawi, On pseudo-almost valuation domains, Comm. Algebra 35 no. 4 (2007), 1167–1181. DOI MR Zbl
-
C. Bakkari, N. Mahdou, and A. Riffi, Graded almost valuation domains, Vietnam J. Math. 49 no. 4 (2021), 1141–1150. DOI MR Zbl
-
J. A. Huckaba, Commutative rings with zero divisors, Monographs and Textbooks in Pure and Applied Mathematics 117, Marcel Dekker, New York, 1988. MR Zbl
-
R. Jahani-Nezhad and F. Khoshayand, Almost valuation rings, Bull. Iranian Math. Soc. 43 no. 3 (2017), 807–816. MR Zbl
-
N. Jarboui and D. E. Dobbs, On almost valuation ring pairs, J. Algebra Appl. 20 no. 10 (2021), Paper no. 2150182. DOI MR Zbl
-
C. Jayaram and Ü. Tekir, von Neumann regular modules, Comm. Algebra 46 no. 5 (2018), 2205–2217. DOI MR Zbl
-
M. Kabbour and N. Mahdou, On valuation rings, Comm. Algebra 39 no. 1 (2011), 176–183. DOI MR Zbl
-
I. Kaplansky, Commutative rings, revised ed., University of Chicago Press, Chicago, Ill.-London, 1974. MR Zbl
-
N. Mahdou, A. Mimouni, and M. A. S. Moutui, On almost valuation and almost Bézout rings, Comm. Algebra 43 no. 1 (2015), 297–308. DOI MR Zbl
-
C. Năstăsescu and F. Van Oystaeyen, Methods of graded rings, Lecture Notes in Math. 1836, Springer, Berlin, 2004. DOI MR Zbl
-
D. G. Northcott, Lessons on rings, modules and multiplicities, Cambridge University Press, London, 1968. MR Zbl
-
M. Refai, M. Hailat, and S. Obiedat, Graded radicals and graded prime spectra, Far East J. Math. Sci. (FJMS) Special Volume, Part I (2000), 59–73. MR Zbl
|