Current volume
Past volumes
1952-1968 Revista de la Unión Matemática Argentina y de la Asociación Física Argentina
1944-1951 Revista de la Unión Matemática Argentina; órgano de la Asociación Física Argentina
1936-1944
|
A generalized Bernoulli differential equation
Hector Carmenate, Paul Bosch, Juan E. Nápoles, and José M. Sigarreta
Volume 68, no. 2
(2025),
pp. 555–575
Published online (final version): October 8, 2025
https://doi.org/10.33044/revuma.4560
Download PDF
Abstract
We study a generalized form of the Bernoulli differential equation, employing a
generalized conformable derivative. We first establish a generalized variant of Gronwall's
inequality, which is essential for assessing the stability of generalized differential
equation systems, and offer insights into the qualitative behavior of the trivial solution
of the proposed equation. We then present and prove the main results concerning the
solution of the generalized Bernoulli differential equation, complemented by illustrative
examples that highlight the advantages of this generalized derivative approach.
Furthermore, we introduce a finite difference method as an alternative technique to
approximate the solution of the generalized Bernoulli equation and demonstrate its
validity through practical examples.
References
-
T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math. 279 (2015), 57–66. DOI MR Zbl
-
R. Abreu-Blaya, A. Fleitas, J. E. Nápoles Valdés, R. Reyes, J. M. Rodríguez, and J. M. Sigarreta, On the conformable fractional logistic models, Math. Methods Appl. Sci. 43 no. 7 (2020), 4156–4167. DOI MR Zbl
-
M. ALHorani and R. Khalil, Total fractional differentials with applications to exact fractional differential equations, Int. J. Comput. Math. 95 no. 6-7 (2018), 1444–1452. DOI MR Zbl
-
R. Almeida, M. Guzowska, and T. Odzijewicz, A remark on local fractional calculus and ordinary derivatives, Open Math. 14 no. 1 (2016), 1122–1124. DOI MR Zbl
-
A. Atangana and D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Thermal Sci. 20 no. 2 (2016), 763–769. DOI
-
A. Atangana and E. F. Doungmo Goufo, Extension of matched asymptotic method to fractional boundary layers problems, Math. Probl. Eng. (2014), article no. 107535. DOI MR Zbl
-
D. Baleanu and A. Fernandez, On fractional operators and their classifications, Mathematics 7 no. 9 (2019), article no. 830. DOI
-
J. Bernoulli, Explicationes, annotationes et additiones ad ea quæ in actis superiorum annorum de curva elastica, isochrona paracentrica, & velaria, hinc inde memorata, & partim controversa leguntur; ubi de linea mediarum directionum, aliisque novis, Acta Eruditorum Dec (1695), 537–553.
-
P. Bosch, J. F. Gómez-Aguilar, J. M. Rodríguez, and J. M. Sigarreta, Analysis of dengue fever outbreak by generalized fractional derivative, Fractals 28 no. 8 (2020), article no. 2040038. DOI Zbl
-
M. Braun, Differential equations and their applications, fourth ed., Texts in Applied Mathematics 11, Springer, New York, 1993. DOI MR Zbl
-
E. A. Coddington and N. Levinson, Theory of ordinary differential equations, McGraw-Hill, New York, 1955. MR Zbl
-
M. D'Ovidio, A. C. Lai, and P. Loreti, Solutions of Bernoulli equations in the fractional setting, Fractal and Fractional 5 no. 2 (2021), article no. 57. DOI
-
A. Fernandez, M. A. Özarslan, and D. Baleanu, On fractional calculus with general analytic kernels, Appl. Math. Comput. 354 (2019), 248–265. DOI MR Zbl
-
A. Fleitas, J. Gómez-Aguilar, J. E. Nápoles Valdés, J. M. Rodríguez, and J. M. Sigarreta, Analysis of the local Drude model involving the generalized fractional derivative, Optik 193 (2019), article no. 163008. DOI
-
A. Fleitas, J. A. Méndez-Bermúdez, J. E. Nápoles Valdés, and J. M. Sigarreta Almira, On fractional Liénard-type systems, Rev. Mexicana Fís. 65 no. 6 (2019), 618–625. DOI MR
-
A. Fleitas, J. E. Nápoles Valdés, J. M. Rodríguez, and J. M. Sigarreta-Almira, Note on the generalized conformable derivative, Rev. Un. Mat. Argentina 62 no. 2 (2021), 443–457. DOI MR Zbl
-
J. F. Gómez-Aguilar, Irving–Mullineux oscillator via fractional derivatives with Mittag-Leffler kernel, Chaos Solitons Fractals 95 (2017), 179–186. DOI MR Zbl
-
J. F. Gómez-Aguilar, Analytical and numerical solutions of a nonlinear alcoholism model via variable-order fractional differential equations, Phys. A 494 (2018), 52–75. DOI MR Zbl
-
P. M. Guzmán, G. Langton, L. M. Lugo Motta Bittencurt, J. Medina, and J. E. Nápoles Valdes, A new definition of a fractional derivative of local type, J. Math. Anal. 9 no. 2 (2018), 88–98. MR Available at https://web.archive.org/web/20191104234308/http://www.ilirias.com/jma/repository/docs/JMA9-2-9.pdf.
-
P. M. Guzmán, L. M. Lugo, and J. E. Nápoles Valdés, On a new generalized integral operator and certain operating properties, Axioms 9 no. 2 (2020), article no. 69. DOI
-
M. Hajipour, A. Jajarmi, D. Baleanu, and H. Sun, On an accurate discretization of a variable-order fractional reaction-diffusion equation, Commun. Nonlinear Sci. Numer. Simul. 69 (2019), 119–133. DOI MR Zbl
-
M. A. Hammad and R. Khalil, Abel's formula and Wronskian for conformable fractional differential equations, Int. J. Differ. Equ. Appl. 13 no. 3 (2014), 177–183.
-
J. C. Hernández-Gómez, R. Reyes, J. M. Rodríguez, and J. M. Sigarreta, Fractional model for the study of the tuberculosis in Mexico, Math. Methods Appl. Sci. 45 no. 17 (2022), 10675–10688. DOI MR Zbl
-
L.-L. Huang, D. Baleanu, G.-C. Wu, and S.-D. Zeng, A new application of the fractional logistic map, Rom. J. Phys. 61 no. 7-8 (2016), 1172–1179.
-
F. Jarad, E. Uğurlu, T. Abdeljawad, and D. Baleanu, On a new class of fractional operators, Adv. Difference Equ. (2017), article no. 247. DOI MR Zbl
-
U. N. Katugampola, A new fractional derivative with classical properties, 2014. arXiv:1410.6535v2 [math.CA].
-
R. Khalil, M. Al Horani, A. Yousef, and M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math. 264 (2014), 65–70. DOI MR Zbl
-
A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Math. Studies 204, Elsevier, Amsterdam, 2006. MR Zbl
-
D. Kumar, J. Singh, M. A. Qurashi, and D. Baleanu, Analysis of logistic equation pertaining to a new fractional derivative with non-singular kernel, Adv. Mech. Eng. 9 no. 2 (2017). DOI
-
S. S. Mahmood, K. J. Hamad, S. A. Hamad, and D. Omar, Bernoulli and Riccati fractional differential equations can be solved analytically by using conformable derivatives, Turkish J. Comput. Math. Educ. 12 no. 13 (2021), 7158–7165.
-
F. Martínez, I. Martínez, M. K. A. Kaabar, and S. Paredes, Note on the conformable boundary value problems: Sturm's theorems and Green's function, Rev. Mexicana Fís. 67 no. 3 (2021), 471–481. DOI MR
-
F. Mohammadi, L. Moradi, D. Baleanu, and A. Jajarmi, A hybrid functions numerical scheme for fractional optimal control problems: Application to nonanalytic dynamic systems, J. Vib. Control 24 no. 21 (2018), 5030–5043. DOI MR
-
K. B. Oldham and J. Spanier, The fractional calculus: Theory and applications of differentiation and integration to arbitrary order, Mathematics in Science and Engineering 111, Academic Press, London, 1974.
-
Y. Peña Pérez, R. Abreu Blaya, P. Bosch, and J. Bory Reyes, Dirichlet type problem for 2D quaternionic time-harmonic Maxwell system in fractal domains, Adv. Math. Phys. (2020), article no. 4735357. DOI MR Zbl
-
S. H. Strogatz, Nonlinear dynamics and chaos, third ed., CRC Press, Boca Raton, FL, 2024. DOI MR Zbl
-
M. Vivas-Cortez, M. P. Árciga, J. C. Najera, and J. E. Hernández, On some conformable boundary value problems in the setting of a new generalized conformable fractional derivative, Demonstr. Math. 56 no. 1 (2023), article no. 20220212. DOI MR Zbl
|