Revista de la
Unión Matemática Argentina
The pointillist principle for variation operators and jump functions
Kevin Hughes

Volume 68, no. 2 (2025), pp. 577–588    

Published online (final version): October 8, 2025

https://doi.org/10.33044/revuma.4124

Download PDF

Abstract

I extend the pointillist principles of Moon and Carrillo–de Guzmán to variational operators and jump functions.

References

  1. J. Bourgain, Pointwise ergodic theorems for arithmetic sets, Inst. Hautes Études Sci. Publ. Math. no. 69 (1989), 5–45, with an appendix by the author, Harry Furstenberg, Yitzhak Katznelson and Donald S. Ornstein.  DOI  MR  Zbl
  2. M. Carena, Weak type $(1,1)$ of maximal operators on metric measure spaces, Rev. Un. Mat. Argentina 50 no. 1 (2009), 145–159.  MR  Zbl
  3. H. Carlsson, A new proof of the Hardy–Littlewood maximal theorem, Bull. London Math. Soc. 16 no. 6 (1984), 595–596.  DOI  MR  Zbl
  4. M. T. Carrillo and M. de Guzmán, Maximal convolution operators and approximations, in Functional analysis, holomorphy and approximation theory (Rio de Janeiro, 1980), Notas Mat. 88, North-Holland, Amsterdam-New York, 1982, pp. 117–129.  MR  Zbl
  5. L. Grafakos and M. Mastyło, Restricted weak type versus weak type, Proc. Amer. Math. Soc. 133 no. 4 (2005), 1075–1081.  DOI  MR  Zbl
  6. R. L. Jones, A. Seeger, and J. Wright, Strong variational and jump inequalities in harmonic analysis, Trans. Amer. Math. Soc. 360 no. 12 (2008), 6711–6742.  DOI  MR  Zbl
  7. D. Kosz, On the discretization technique for the Hardy–Littlewood maximal operators, Real Anal. Exchange 41 no. 2 (2016), 287–292.  MR  Zbl Available at http://projecteuclid.org/euclid.rae/1490839331.
  8. A. D. Melas, The best constant for the centered Hardy–Littlewood maximal inequality, Ann. of Math. (2) 157 no. 2 (2003), 647–688.  DOI  MR  Zbl
  9. M. T. Menarguez and F. Soria, Weak type $(1,1)$ inequalities of maximal convolution operators, Rend. Circ. Mat. Palermo (2) 41 no. 3 (1992), 342–352.  DOI  MR  Zbl
  10. M. Mirek, E. M. Stein, and B. Trojan, $\ell^p(\mathbb{Z}^d)$-estimates for discrete operators of Radon type: variational estimates, Invent. Math. 209 no. 3 (2017), 665–748.  DOI  MR  Zbl
  11. K. H. Moon, On restricted weak type $(1,1)$, Proc. Amer. Math. Soc. 42 (1974), 148–152.  DOI  MR  Zbl
  12. G. Pisier and Q. H. Xu, The strong $p$-variation of martingales and orthogonal series, Probab. Theory Related Fields 77 no. 4 (1988), 497–514.  DOI  MR  Zbl
  13. A. Seeger, T. Tao, and J. Wright, Pointwise convergence of lacunary spherical means, in Harmonic analysis at Mount Holyoke (South Hadley, MA, 2001), Contemp. Math. 320, American Mathematical Society, Providence, RI, 2003, pp. 341–351.  DOI  MR  Zbl
  14. A. Seeger and J. Wright, Problems on averages and lacunary maximal functions, in Marcinkiewicz centenary volume, Banach Center Publ. 95, Polish Academy of Sciences, Institute of Mathematics, Warsaw, 2011, pp. 235–250.  DOI  MR  Zbl