Current volume
Past volumes
1952-1968 Revista de la Unión Matemática Argentina y de la Asociación Física Argentina
1944-1951 Revista de la Unión Matemática Argentina; órgano de la Asociación Física Argentina
1936-1944
|
The pointillist principle for variation operators and jump functions
Kevin Hughes
Volume 68, no. 2
(2025),
pp. 577–588
Published online (final version): October 8, 2025
https://doi.org/10.33044/revuma.4124
Download PDF
Abstract
I extend the pointillist principles of Moon and Carrillo–de Guzmán to variational
operators and jump functions.
References
-
J. Bourgain, Pointwise ergodic theorems for arithmetic sets, Inst. Hautes Études Sci. Publ. Math. no. 69 (1989), 5–45, with an appendix by the author, Harry Furstenberg, Yitzhak Katznelson and Donald S. Ornstein. DOI MR Zbl
-
M. Carena, Weak type $(1,1)$ of maximal operators on metric measure spaces, Rev. Un. Mat. Argentina 50 no. 1 (2009), 145–159. MR Zbl
-
H. Carlsson, A new proof of the Hardy–Littlewood maximal theorem, Bull. London Math. Soc. 16 no. 6 (1984), 595–596. DOI MR Zbl
-
M. T. Carrillo and M. de Guzmán, Maximal convolution operators and approximations, in Functional analysis, holomorphy and approximation theory (Rio de Janeiro, 1980), Notas Mat. 88, North-Holland, Amsterdam-New York, 1982, pp. 117–129. MR Zbl
-
L. Grafakos and M. Mastyło, Restricted weak type versus weak type, Proc. Amer. Math. Soc. 133 no. 4 (2005), 1075–1081. DOI MR Zbl
-
R. L. Jones, A. Seeger, and J. Wright, Strong variational and jump inequalities in harmonic analysis, Trans. Amer. Math. Soc. 360 no. 12 (2008), 6711–6742. DOI MR Zbl
-
D. Kosz, On the discretization technique for the Hardy–Littlewood maximal operators, Real Anal. Exchange 41 no. 2 (2016), 287–292. MR Zbl Available at http://projecteuclid.org/euclid.rae/1490839331.
-
A. D. Melas, The best constant for the centered Hardy–Littlewood maximal inequality, Ann. of Math. (2) 157 no. 2 (2003), 647–688. DOI MR Zbl
-
M. T. Menarguez and F. Soria, Weak type $(1,1)$ inequalities of maximal convolution operators, Rend. Circ. Mat. Palermo (2) 41 no. 3 (1992), 342–352. DOI MR Zbl
-
M. Mirek, E. M. Stein, and B. Trojan, $\ell^p(\mathbb{Z}^d)$-estimates for discrete operators of Radon type: variational estimates, Invent. Math. 209 no. 3 (2017), 665–748. DOI MR Zbl
-
K. H. Moon, On restricted weak type $(1,1)$, Proc. Amer. Math. Soc. 42 (1974), 148–152. DOI MR Zbl
-
G. Pisier and Q. H. Xu, The strong $p$-variation of martingales and orthogonal series, Probab. Theory Related Fields 77 no. 4 (1988), 497–514. DOI MR Zbl
-
A. Seeger, T. Tao, and J. Wright, Pointwise convergence of lacunary spherical means, in Harmonic analysis at Mount Holyoke (South Hadley, MA, 2001), Contemp. Math. 320, American Mathematical Society, Providence, RI, 2003, pp. 341–351. DOI MR Zbl
-
A. Seeger and J. Wright, Problems on averages and lacunary maximal functions, in Marcinkiewicz centenary volume, Banach Center Publ. 95, Polish Academy of Sciences, Institute of Mathematics, Warsaw, 2011, pp. 235–250. DOI MR Zbl
|