Revista de la
Unión Matemática Argentina
A high-accuracy compact finite difference scheme for time-fractional diffusion equations
Xindong Zhang, Hanxiao Wang, Ziyang Luo, and Leilei Wei

Volume 68, no. 2 (2025), pp. 589–609    

Published online (final version): October 8, 2025

https://doi.org/10.33044/revuma.4665

Download PDF

Abstract

We propose a compact finite difference (CFD) scheme for the solution of time-fractional diffusion equations (TFDE) with the Caputo–Fabrizio derivative. The Caputo–Fabrizio derivative is discussed in the time direction and is discretized by a special discrete scheme. The compact difference operator is introduced in the space direction. We prove the unconditional stability and convergence of the proposed scheme. We show that the convergence order is $O(\tau^3+h^4)$, where $\tau$ and $h$ are the temporal stepsize and spatial stepsize, respectively. Our main purpose is to show that the Caputo–Fabrizio derivative without singular term can improve the accuracy of the discrete scheme. Numerical examples demonstrate the efficiency of the proposed method, and the numerical results agree well with the theoretical predictions.

References

  1. S. Abbas, M. Benchohra, and J. J. Nieto, Caputo–Fabrizio fractional differential equations with non instantaneous impulses, Rend. Circ. Mat. Palermo (2) 71 no. 1 (2022), 131–144.  DOI  MR  Zbl
  2. T. Akman, B. Yıldız, and D. Baleanu, New discretization of Caputo–Fabrizio derivative, Comput. Appl. Math. 37 no. 3 (2018), 3307–3333.  DOI  MR  Zbl
  3. A. Atangana, Non validity of index law in fractional calculus: A fractional differential operator with Markovian and non-Markovian properties, Phys. A 505 (2018), 688–706.  DOI  MR  Zbl
  4. A. Atangana, Modelling the spread of COVID-19 with new fractal-fractional operators: Can the lockdown save mankind before vaccination?, Chaos Solitons Fractals 136 (2020), Paper No. 109860.  DOI  MR
  5. A. Atangana and J. Gómez-Aguilar, Decolonisation of fractional calculus rules: Breaking commutativity and associativity to capture more natural phenomena, Eur. Phys. J. Plus 133 (2018), Paper No. 166.  DOI
  6. M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differentiation Appl. 1 no. 2 (2015), 73–85.
  7. J. A. M. Carrer, B. S. Solheid, J. Trevelyan, and M. Seaid, A boundary element method formulation based on the Caputo derivative for the solution of the anomalous diffusion problem, Eng. Anal. Bound. Elem. 122 (2021), 132–144.  DOI  MR  Zbl
  8. M. Cui, Compact finite difference method for the fractional diffusion equation, J. Comput. Phys. 228 no. 20 (2009), 7792–7804.  DOI  MR  Zbl
  9. A. Daraghmeh, N. Qatanani, and A. Saadeh, Numerical solution of fractional differential equations, Appl. Math. (Irvine) 11 (2020), 1100–1115.  DOI
  10. H. Dehestani and Y. Ordokhani, Pell–Lucas discretization method for finding the solution of Caputo–Fabrizio time-fractional diffusion equations, Vietnam J. Math. 52 no. 1 (2024), 235–254.  DOI  MR  Zbl
  11. Z.-W. Fang, H.-W. Sun, and H. Wang, A fast method for variable-order Caputo fractional derivative with applications to time-fractional diffusion equations, Comput. Math. Appl. 80 no. 5 (2020), 1443–1458.  DOI  MR  Zbl
  12. M. Fardi and J. Alidousti, A Legendre spectral-finite difference method for Caputo–Fabrizio time-fractional distributed-order diffusion equation, Math. Sci. (Springer) 16 no. 4 (2022), 417–430.  DOI  MR  Zbl
  13. G.-H. Gao and H.-W. Sun, Three-point combined compact difference schemes for time-fractional advection-diffusion equations with smooth solutions, J. Comput. Phys. 298 (2015), 520–538.  DOI  MR  Zbl
  14. R. Garrappa, Numerical solution of fractional differential equations: A survey and a software tutorial, Mathematics 6 no. 2 (2018), Paper No. 16.  DOI  Zbl
  15. R. Gorenflo, Y. Luchko, and M. Yamamoto, Time-fractional diffusion equation in the fractional Sobolev spaces, Fract. Calc. Appl. Anal. 18 no. 3 (2015), 799–820.  DOI  MR  Zbl
  16. R. Gorenflo, F. Mainardi, D. Moretti, and P. Paradisi, Time fractional diffusion: A discrete random walk approach, Nonlinear Dynam. 29 no. 1-4 (2002), 129–143.  DOI  MR  Zbl
  17. B. Guo, X. Pu, and F. Huang, Fractional partial differential equations and their numerical solutions, World Scientific, Hackensack, NJ, 2015.  DOI  MR  Zbl
  18. S. Guo, L. Mei, Y. Li, and Y. Sun, The improved fractional sub-equation method and its applications to the space-time fractional differential equations in fluid mechanics, Phys. Lett. A 376 no. 4 (2012), 407–411.  DOI  MR  Zbl
  19. M. S. Hashemi, A novel approach to find exact solutions of fractional evolution equations with non-singular kernel derivative, Chaos Solitons Fractals 152 (2021), Paper No. 111367.  DOI  MR  Zbl
  20. R. Hilfer (ed.), Applications of fractional calculus in physics, World Scientific, Singapore, 2000.  DOI  MR  Zbl
  21. J. Hristov, Derivatives with non-singular kernels from the Caputo–Fabrizio definition and beyond: Appraising analysis with emphasis on diffusion models, in Frontiers in fractional calculus, Curr. Dev. Math. Sci. 1, Bentham Sci. Publ., Sharjah, 2018, pp. 269–341.  DOI  MR  Zbl
  22. D. Hu and X. Cao, A fourth-order compact ADI scheme for two-dimensional Riesz space fractional nonlinear reaction-diffusion equation, Int. J. Comput. Math. 97 no. 9 (2020), 1928–1948.  DOI  MR  Zbl
  23. A. Jannelli, M. Ruggieri, and M. P. Speciale, Numerical solutions of space-fractional advection-diffusion equations with nonlinear source term, Appl. Numer. Math. 155 (2020), 93–102.  DOI  MR  Zbl
  24. A. A. Kosov and È. I. Semenov, Exact solutions of the nonlinear diffusion equation, Sib. Math. J. 60 no. 1 (2019), 93–107, translation from Sib. Mat. Zh. 60 no. 1 (2019), 123–140.  DOI  MR  Zbl
  25. S. Kumar, A. Kumar, B. Samet, J. F. Gómez-Aguilar, and M. S. Osman, A chaos study of tumor and effector cells in fractional tumor-immune model for cancer treatment, Chaos Solitons Fractals 141 (2020), Paper No. 110321.  DOI  MR  Zbl
  26. Y. Li, F. Liu, I. W. Turner, and T. Li, Time-fractional diffusion equation for signal smoothing, Appl. Math. Comput. 326 (2018), 108–116.  DOI  MR  Zbl
  27. Y. Lin and C. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys. 225 no. 2 (2007), 1533–1552.  DOI  MR  Zbl
  28. J. Liu, J. Zhang, and X. Zhang, Semi-discretized numerical solution for time fractional convection-diffusion equation by RBF-FD, Appl. Math. Lett. 128 (2022), Paper No. 107880.  DOI  MR  Zbl
  29. Y. Luchko, Initial-boundary-value problems for the one-dimensional time-fractional diffusion equation, Fract. Calc. Appl. Anal. 15 no. 1 (2012), 141–160.  DOI  MR  Zbl
  30. V. Mehandiratta and M. Mehra, A difference scheme for the time-fractional diffusion equation on a metric star graph, Appl. Numer. Math. 158 (2020), 152–163.  DOI  MR  Zbl
  31. H. Mohammadi, S. Kumar, S. Rezapour, and S. Etemad, A theoretical study of the Caputo–Fabrizio fractional modeling for hearing loss due to mumps virus with optimal control, Chaos Solitons Fractals 144 (2021), Paper No. 110668.  DOI  MR
  32. K. M. Owolabi and A. Atangana, Numerical approximation of nonlinear fractional parabolic differential equations with Caputo–Fabrizio derivative in Riemann–Liouville sense, Chaos Solitons Fractals 99 (2017), 171–179.  DOI  MR  Zbl
  33. I. Podlubny, Fractional differential equations, Math. Sci. Eng. 198, Academic Press, San Diego, CA, 1999.  MR  Zbl
  34. M. Ran and C. Zhang, New compact difference scheme for solving the fourth-order time fractional sub-diffusion equation of the distributed order, Appl. Numer. Math. 129 (2018), 58–70.  DOI  MR  Zbl
  35. M. Shafiq, F. A. Abdullah, M. Abbas, A. Sm Alzaidi, and M. B. Riaz, Memory effect analysis using piecewise cubic B-spline of time fractional diffusion equation, Fractals 30 no. 8 (2022), Paper No. 2240270.  DOI  Zbl
  36. J. Shi and M. Chen, A second-order accurate scheme for two-dimensional space fractional diffusion equations with time Caputo–Fabrizio fractional derivative, Appl. Numer. Math. 151 (2020), 246–262.  DOI  MR  Zbl
  37. Z. Soori and A. Aminataei, Two new approximations to Caputo–Fabrizio fractional equation on non-uniform meshes and its applications, Iran. J. Numer. Anal. Optim. 11 no. 2 (2021), 365–383.  DOI  Zbl
  38. H. Sun, A. Chang, Y. Zhang, and W. Chen, A review on variable-order fractional differential equations: Mathematical foundations, physical models, numerical methods and applications, Fract. Calc. Appl. Anal. 22 no. 1 (2019), 27–59.  DOI  MR  Zbl
  39. M. Taghipour and H. Aminikhah, A new compact alternating direction implicit method for solving two dimensional time fractional diffusion equation with Caputo–Fabrizio derivative, Filomat 34 no. 11 (2020), 3609–3626.  DOI  MR  Zbl
  40. Z. Wang and S. Vong, Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation, J. Comput. Phys. 277 (2014), 1–15.  DOI  MR  Zbl
  41. Y. Yan, K. Pal, and N. J. Ford, Higher order numerical methods for solving fractional differential equations, BIT 54 no. 2 (2014), 555–584.  DOI  MR  Zbl
  42. H. Ye, F. Liu, and V. Anh, Compact difference scheme for distributed-order time-fractional diffusion-wave equation on bounded domains, J. Comput. Phys. 298 (2015), 652–660.  DOI  MR  Zbl
  43. P. Zhang and H. Pu, A second-order compact difference scheme for the fourth-order fractional sub-diffusion equation, Numer. Algorithms 76 no. 2 (2017), 573–598.  DOI  MR  Zbl
  44. X. Zhao, Z.-Z. Sun, and Z.-P. Hao, A fourth-order compact ADI scheme for two-dimensional nonlinear space fractional Schrödinger equation, SIAM J. Sci. Comput. 36 no. 6 (2014), A2865–A2886.  DOI  MR  Zbl