Current volume
Past volumes
1952-1968 Revista de la Unión Matemática Argentina y de la Asociación Física Argentina
1944-1951 Revista de la Unión Matemática Argentina; órgano de la Asociación Física Argentina
1936-1944
|
A high-accuracy compact finite difference scheme for time-fractional diffusion equations
Xindong Zhang, Hanxiao Wang, Ziyang Luo, and Leilei Wei
Volume 68, no. 2
(2025),
pp. 589–609
Published online (final version): October 8, 2025
https://doi.org/10.33044/revuma.4665
Download PDF
Abstract
We propose a compact finite difference (CFD) scheme for the solution of time-fractional
diffusion equations (TFDE) with the Caputo–Fabrizio derivative. The Caputo–Fabrizio
derivative is discussed in the time direction and is discretized by a special discrete
scheme. The compact difference operator is introduced in the space direction. We prove the
unconditional stability and convergence of the proposed scheme. We show that the
convergence order is $O(\tau^3+h^4)$, where $\tau$ and $h$ are the temporal stepsize and
spatial stepsize, respectively. Our main purpose is to show that the Caputo–Fabrizio
derivative without singular term can improve the accuracy of the discrete scheme.
Numerical examples demonstrate the efficiency of the proposed method, and the numerical
results agree well with the theoretical predictions.
References
-
S. Abbas, M. Benchohra, and J. J. Nieto, Caputo–Fabrizio fractional differential equations with non instantaneous impulses, Rend. Circ. Mat. Palermo (2) 71 no. 1 (2022), 131–144. DOI MR Zbl
-
T. Akman, B. Yıldız, and D. Baleanu, New discretization of Caputo–Fabrizio derivative, Comput. Appl. Math. 37 no. 3 (2018), 3307–3333. DOI MR Zbl
-
A. Atangana, Non validity of index law in fractional calculus: A fractional differential operator with Markovian and non-Markovian properties, Phys. A 505 (2018), 688–706. DOI MR Zbl
-
A. Atangana, Modelling the spread of COVID-19 with new fractal-fractional operators: Can the lockdown save mankind before vaccination?, Chaos Solitons Fractals 136 (2020), Paper No. 109860. DOI MR
-
A. Atangana and J. Gómez-Aguilar, Decolonisation of fractional calculus rules: Breaking commutativity and associativity to capture more natural phenomena, Eur. Phys. J. Plus 133 (2018), Paper No. 166. DOI
-
M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differentiation Appl. 1 no. 2 (2015), 73–85.
-
J. A. M. Carrer, B. S. Solheid, J. Trevelyan, and M. Seaid, A boundary element method formulation based on the Caputo derivative for the solution of the anomalous diffusion problem, Eng. Anal. Bound. Elem. 122 (2021), 132–144. DOI MR Zbl
-
M. Cui, Compact finite difference method for the fractional diffusion equation, J. Comput. Phys. 228 no. 20 (2009), 7792–7804. DOI MR Zbl
-
A. Daraghmeh, N. Qatanani, and A. Saadeh, Numerical solution of fractional differential equations, Appl. Math. (Irvine) 11 (2020), 1100–1115. DOI
-
H. Dehestani and Y. Ordokhani, Pell–Lucas discretization method for finding the solution of Caputo–Fabrizio time-fractional diffusion equations, Vietnam J. Math. 52 no. 1 (2024), 235–254. DOI MR Zbl
-
Z.-W. Fang, H.-W. Sun, and H. Wang, A fast method for variable-order Caputo fractional derivative with applications to time-fractional diffusion equations, Comput. Math. Appl. 80 no. 5 (2020), 1443–1458. DOI MR Zbl
-
M. Fardi and J. Alidousti, A Legendre spectral-finite difference method for Caputo–Fabrizio time-fractional distributed-order diffusion equation, Math. Sci. (Springer) 16 no. 4 (2022), 417–430. DOI MR Zbl
-
G.-H. Gao and H.-W. Sun, Three-point combined compact difference schemes for time-fractional advection-diffusion equations with smooth solutions, J. Comput. Phys. 298 (2015), 520–538. DOI MR Zbl
-
R. Garrappa, Numerical solution of fractional differential equations: A survey and a software tutorial, Mathematics 6 no. 2 (2018), Paper No. 16. DOI Zbl
-
R. Gorenflo, Y. Luchko, and M. Yamamoto, Time-fractional diffusion equation in the fractional Sobolev spaces, Fract. Calc. Appl. Anal. 18 no. 3 (2015), 799–820. DOI MR Zbl
-
R. Gorenflo, F. Mainardi, D. Moretti, and P. Paradisi, Time fractional diffusion: A discrete random walk approach, Nonlinear Dynam. 29 no. 1-4 (2002), 129–143. DOI MR Zbl
-
B. Guo, X. Pu, and F. Huang, Fractional partial differential equations and their numerical solutions, World Scientific, Hackensack, NJ, 2015. DOI MR Zbl
-
S. Guo, L. Mei, Y. Li, and Y. Sun, The improved fractional sub-equation method and its applications to the space-time fractional differential equations in fluid mechanics, Phys. Lett. A 376 no. 4 (2012), 407–411. DOI MR Zbl
-
M. S. Hashemi, A novel approach to find exact solutions of fractional evolution equations with non-singular kernel derivative, Chaos Solitons Fractals 152 (2021), Paper No. 111367. DOI MR Zbl
-
R. Hilfer (ed.), Applications of fractional calculus in physics, World Scientific, Singapore, 2000. DOI MR Zbl
-
J. Hristov, Derivatives with non-singular kernels from the Caputo–Fabrizio definition and beyond: Appraising analysis with emphasis on diffusion models, in Frontiers in fractional calculus, Curr. Dev. Math. Sci. 1, Bentham Sci. Publ., Sharjah, 2018, pp. 269–341. DOI MR Zbl
-
D. Hu and X. Cao, A fourth-order compact ADI scheme for two-dimensional Riesz space fractional nonlinear reaction-diffusion equation, Int. J. Comput. Math. 97 no. 9 (2020), 1928–1948. DOI MR Zbl
-
A. Jannelli, M. Ruggieri, and M. P. Speciale, Numerical solutions of space-fractional advection-diffusion equations with nonlinear source term, Appl. Numer. Math. 155 (2020), 93–102. DOI MR Zbl
-
A. A. Kosov and È. I. Semenov, Exact solutions of the nonlinear diffusion equation, Sib. Math. J. 60 no. 1 (2019), 93–107, translation from Sib. Mat. Zh. 60 no. 1 (2019), 123–140. DOI MR Zbl
-
S. Kumar, A. Kumar, B. Samet, J. F. Gómez-Aguilar, and M. S. Osman, A chaos study of tumor and effector cells in fractional tumor-immune model for cancer treatment, Chaos Solitons Fractals 141 (2020), Paper No. 110321. DOI MR Zbl
-
Y. Li, F. Liu, I. W. Turner, and T. Li, Time-fractional diffusion equation for signal smoothing, Appl. Math. Comput. 326 (2018), 108–116. DOI MR Zbl
-
Y. Lin and C. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys. 225 no. 2 (2007), 1533–1552. DOI MR Zbl
-
J. Liu, J. Zhang, and X. Zhang, Semi-discretized numerical solution for time fractional convection-diffusion equation by RBF-FD, Appl. Math. Lett. 128 (2022), Paper No. 107880. DOI MR Zbl
-
Y. Luchko, Initial-boundary-value problems for the one-dimensional time-fractional diffusion equation, Fract. Calc. Appl. Anal. 15 no. 1 (2012), 141–160. DOI MR Zbl
-
V. Mehandiratta and M. Mehra, A difference scheme for the time-fractional diffusion equation on a metric star graph, Appl. Numer. Math. 158 (2020), 152–163. DOI MR Zbl
-
H. Mohammadi, S. Kumar, S. Rezapour, and S. Etemad, A theoretical study of the Caputo–Fabrizio fractional modeling for hearing loss due to mumps virus with optimal control, Chaos Solitons Fractals 144 (2021), Paper No. 110668. DOI MR
-
K. M. Owolabi and A. Atangana, Numerical approximation of nonlinear fractional parabolic differential equations with Caputo–Fabrizio derivative in Riemann–Liouville sense, Chaos Solitons Fractals 99 (2017), 171–179. DOI MR Zbl
-
I. Podlubny, Fractional differential equations, Math. Sci. Eng. 198, Academic Press, San Diego, CA, 1999. MR Zbl
-
M. Ran and C. Zhang, New compact difference scheme for solving the fourth-order time fractional sub-diffusion equation of the distributed order, Appl. Numer. Math. 129 (2018), 58–70. DOI MR Zbl
-
M. Shafiq, F. A. Abdullah, M. Abbas, A. Sm Alzaidi, and M. B. Riaz, Memory effect analysis using piecewise cubic B-spline of time fractional diffusion equation, Fractals 30 no. 8 (2022), Paper No. 2240270. DOI Zbl
-
J. Shi and M. Chen, A second-order accurate scheme for two-dimensional space fractional diffusion equations with time Caputo–Fabrizio fractional derivative, Appl. Numer. Math. 151 (2020), 246–262. DOI MR Zbl
-
Z. Soori and A. Aminataei, Two new approximations to Caputo–Fabrizio fractional equation on non-uniform meshes and its applications, Iran. J. Numer. Anal. Optim. 11 no. 2 (2021), 365–383. DOI Zbl
-
H. Sun, A. Chang, Y. Zhang, and W. Chen, A review on variable-order fractional differential equations: Mathematical foundations, physical models, numerical methods and applications, Fract. Calc. Appl. Anal. 22 no. 1 (2019), 27–59. DOI MR Zbl
-
M. Taghipour and H. Aminikhah, A new compact alternating direction implicit method for solving two dimensional time fractional diffusion equation with Caputo–Fabrizio derivative, Filomat 34 no. 11 (2020), 3609–3626. DOI MR Zbl
-
Z. Wang and S. Vong, Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation, J. Comput. Phys. 277 (2014), 1–15. DOI MR Zbl
-
Y. Yan, K. Pal, and N. J. Ford, Higher order numerical methods for solving fractional differential equations, BIT 54 no. 2 (2014), 555–584. DOI MR Zbl
-
H. Ye, F. Liu, and V. Anh, Compact difference scheme for distributed-order time-fractional diffusion-wave equation on bounded domains, J. Comput. Phys. 298 (2015), 652–660. DOI MR Zbl
-
P. Zhang and H. Pu, A second-order compact difference scheme for the fourth-order fractional sub-diffusion equation, Numer. Algorithms 76 no. 2 (2017), 573–598. DOI MR Zbl
-
X. Zhao, Z.-Z. Sun, and Z.-P. Hao, A fourth-order compact ADI scheme for two-dimensional nonlinear space fractional Schrödinger equation, SIAM J. Sci. Comput. 36 no. 6 (2014), A2865–A2886. DOI MR Zbl
|