Current volume
Past volumes
1952-1968 Revista de la Unión Matemática Argentina y de la Asociación Física Argentina
1944-1951 Revista de la Unión Matemática Argentina; órgano de la Asociación Física Argentina
1936-1944
|
Hamiltonicity of rectangular grid graphs (meshes) with an L‑shaped hole
Movahedeh Rouhani-Marchoobeh and Fatemeh Keshavarz-Kohjerdi
Volume 68, no. 2
(2025),
pp. 611–625
Published online (final version): October 8, 2025
https://doi.org/10.33044/revuma.4432
Download PDF
Abstract
Finding the Hamiltonian cycles in graphs is a well-known problem. Although the
Hamiltonicity of grid graphs has been studied in the literature, there are few results on
Hamiltonicity of grid graphs with holes. In this paper, we study the Hamiltonicity of
rectangular grid graphs (meshes) with an L-shaped hole, and give a linear-time
algorithm. The holes in meshes correspond to the faulty nodes.
References
-
F. Afrati, The Hamilton circuit problem on grids, RAIRO Inform. Théor. Appl. 28 no. 6 (1994), 567–582. DOI MR Zbl
-
E. M. Arkin, S. P. Fekete, K. Islam, H. Meijer, J. S. B. Mitchell, Y. Núñez Rodríguez, V. Polishchuk, D. Rappaport, and H. Xiao, Not being (super)thin or solid is hard: A study of grid Hamiltonicity, Comput. Geom. 42 no. 6-7 (2009), 582–605. DOI MR Zbl
-
A. Asgharian Sardroud and A. Bagheri, Embedding cycles and paths on solid grid graphs, J. Supercomput. 73 no. 4 (2017), 1322–1336. DOI
-
J. A. Bondy and U. S. R. Murty, Graph theory with applications, American Elsevier, New York, 1976. MR Zbl
-
S. D. Chen, H. Shen, and R. Topor, An efficient algorithm for constructing Hamiltonian paths in meshes, Parallel Comput. 28 no. 9 (2002), 1293–1305. DOI MR Zbl
-
V. S. Gordon, Y. L. Orlovich, and F. Werner, Hamiltonian properties of triangular grid graphs, Discrete Math. 308 no. 24 (2008), 6166–6188. DOI MR Zbl
-
K. Hou and J. Lynch, The computational complexity of finding Hamiltonian cycles in grid graphs of semiregular tessellations, in Proceedings of the 30th Canadian Conference on Computational Geometry (CCCG 2018), University of Manitoba, Winnipeg, 2018, pp. 114–128. Available at https://web.archive.org/web/20250731033946/https://cccg.ca/proceedings/2018/proceedings.pdf.
-
R.-W. Hung, Hamiltonian cycles in linear-convex supergrid graphs, Discrete Appl. Math. 211 (2016), 99–112. DOI MR Zbl
-
R.-W. Hung, C.-C. Yao, and S.-J. Chan, The Hamiltonian properties of supergrid graphs, Theoret. Comput. Sci. 602 (2015), 132–148. DOI MR Zbl
-
C. Icking, T. Kamphans, R. Klein, and E. Langetepe, Exploring simple grid polygons, in Computing and combinatorics, Lecture Notes in Comput. Sci. 3595, Springer, Berlin, 2005, pp. 524–533. DOI MR Zbl
-
K. Islam, H. Meijer, Y. Núñez Rodríguez, D. Rappaport, and H. Xiao, Hamilton circuits in hexagonal grid graphs, in Proceedings of the 19th Canadian Conference of Computational Geometry (CCCG), 2007. Available at https://web.archive.org/web/20250802140616/https://cccg.ca/proceedings/2007/04a2.pdf.
-
A. Itai, C. H. Papadimitriou, and J. L. Szwarcfiter, Hamilton paths in grid graphs, SIAM J. Comput. 11 no. 4 (1982), 676–686. DOI MR Zbl
-
F. Keshavarz-Kohjerdi, Off-line exploration of rectangular cellular environments with a rectangular obstacle, Optim. Methods Softw. 37 no. 5 (2022), 1805–1819. DOI MR Zbl
-
F. Keshavarz-Kohjerdi and A. Bagheri, Hamiltonian paths in $L$-shaped grid graphs, Theoret. Comput. Sci. 621 (2016), 37–56. DOI MR Zbl
-
F. Keshavarz-Kohjerdi and A. Bagheri, Linear-time algorithms for finding Hamiltonian and longest $(s,t)$-paths in $C$-shaped grid graphs, Discrete Optim. 35 (2020), article no. 100554. DOI MR Zbl
-
F. Keshavarz-Kohjerdi and A. Bagheri, Finding Hamiltonian cycles of truncated rectangular grid graphs in linear time, Appl. Math. Comput. 436 (2023), article no. 127513. DOI MR Zbl
-
F. Keshavarz-Kohjerdi and A. Bagheri, The Hamiltonicity and Hamiltonian-connectivity of solid supergrid graphs, Bull. Malays. Math. Sci. Soc. 46 no. 3 (2023), article no. 110. DOI MR Zbl
-
F. Keshavarz-Kohjerdi and A. Bagheri, A linear-time algorithm for finding Hamiltonian cycles in rectangular grid graphs with two rectangular holes, Optim. Methods Softw. 38 no. 3 (2023), 591–625. DOI MR Zbl
-
F. Keshavarz-Kohjerdi and A. Bagheri, Hamiltonian $(s,t)$-paths in solid supergrid graphs, Comput. Appl. Math. 43 no. 3 (2024), article no. 110. DOI MR Zbl
-
R. I. Nishat and S. Whitesides, Reconfiguring Hamiltonian cycles in L-shaped grid graphs, in Graph-theoretic concepts in computer science, Lecture Notes in Comput. Sci. 11789, Springer, Cham, 2019, pp. 325–337. DOI MR Zbl
-
J. R. Reay and T. Zamfirescu, Hamiltonian cycles in T-graphs, Discrete Comput. Geom. 24 no. 2-3 (2000), 497–502. DOI MR Zbl
-
A. N. M. Salman, Contributions to graph theory, Ph.D. thesis, University of Twente, 2005. Available at https://research.utwente.nl/en/publications/contributions-to-graph-theory-2.
-
A. N. M. Salman, E. T. Baskoro, and H. J. Broersma, A note concerning Hamilton cycles in some classes of grid graphs, J. Math. Fundam. Sci. 35 no. 1 (2003), 65–70.
-
C. Umans and W. Lenhart, Hamiltonian cycles in solid grid graphs, in Proceedings. 38th Annual Symposium on Foundations of Computer Science, IEEE Computer Society, Los Alamitos, California, 1997, pp. 496–505. DOI
-
C. Zamfirescu and T. Zamfirescu, Hamiltonian properties of grid graphs, SIAM J. Discrete Math. 5 no. 4 (1992), 564–570. DOI MR Zbl
|