Current volume
Past volumes
1952-1968 Revista de la Unión Matemática Argentina y de la Asociación Física Argentina
1944-1951 Revista de la Unión Matemática Argentina; órgano de la Asociación Física Argentina
1936-1944
|
Conditional non-lattice integration, pricing, and superhedging
Christian Bender, Sebastian E. Ferrando, and Alfredo L. Gonzalez
Volume 68, no. 2
(2025),
pp. 627–676
Published online (final version): October 8, 2025
https://doi.org/10.33044/revuma.4351
Download PDF
Abstract
Motivated by financial considerations, we develop a non-classical integration theory that
is not necessarily associated with a measure. The base space consists of stock price
trajectories and embodies a natural no-arbitrage condition. Conditional integrals are
introduced, representing the investment required to hedge an option payoff when entering
the market at any later time. Here, the investment may depend on the stock price history,
and hedging takes place almost everywhere and as a limit over an increasing number of
portfolios. In our setting, the space of elementary integrands fails to satisfy the
lattice property and the notion of null sets is financially motivated and not measure-
theoretic. Therefore, option prices arise from conditional non-lattice integrals rather
than expectations, with no need to impose measurability assumptions.
References
-
B. Acciaio, M. Beiglböck, F. Penkner, and W. Schachermayer, A model-free version of the fundamental theorem of asset pricing and the super-replication theorem, Math. Finance 26 no. 2 (2016), 233–251. DOI MR Zbl
-
D. Bartl, M. Kupper, and A. Neufeld, Pathwise superhedging on prediction sets, Finance Stoch. 24 no. 1 (2020), 215–248. DOI MR Zbl
-
D. Bartl, M. Kupper, D. J. Prömel, and L. Tangpi, Duality for pathwise superhedging in continuous time, Finance Stoch. 23 no. 3 (2019), 697–728. DOI MR Zbl
-
M. Beiglböck, A. M. G. Cox, M. Huesmann, N. Perkowski, and D. J. Prömel, Pathwise superreplication via Vovk's outer measure, Finance Stoch. 21 no. 4 (2017), 1141–1166. DOI MR Zbl
-
C. Bender, S. E. Ferrando, K. Gajewski, and A. L. González, Superhedging supermartingales, Internat. J. Approx. Reason. 187 (2025), Paper No. 109567. DOI MR
-
C. Bender, S. Ferrando, and A. Gonzalez, Model-free finance and non-lattice integration, 2021. arXiv:2105.10623 [q-fin.MF].
-
B. Bouchard and M. Nutz, Arbitrage and duality in nondominated discrete-time models, Ann. Appl. Probab. 25 no. 2 (2015), 823–859. DOI MR Zbl
-
M. Burzoni, M. Frittelli, Z. Hou, M. Maggis, and J. Obłój, Pointwise arbitrage pricing theory in discrete time, Math. Oper. Res. 44 no. 3 (2019), 1034–1057. DOI MR Zbl
-
M. Burzoni, M. Frittelli, and M. Maggis, Universal arbitrage aggregator in discrete-time markets under uncertainty, Finance Stoch. 20 no. 1 (2016), 1–50. DOI MR Zbl
-
M. Burzoni, M. Frittelli, and M. Maggis, Model-free superhedging duality, Ann. Appl. Probab. 27 no. 3 (2017), 1452–1477. DOI MR Zbl
-
I. Degano, S. Ferrando, and A. González, Trajectory based market models. Evaluation of minmax price bounds, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms 25 no. 2 (2018), 97–128. MR Zbl
-
I. Degano, S. Ferrando, and A. González, No-arbitrage symmetries, Acta Math. Sci. Ser. B (Engl. Ed.) 42 no. 4 (2022), 1373–1402. DOI MR Zbl
-
S. E. Ferrando and A. L. Gonzalez, Trajectorial martingale transforms. Convergence and integration, New York J. Math. 24 (2018), 702–738. MR Zbl
-
S. Ferrando, A. Fleck, A. Gonzalez, and A. Rubtsov, Trajectorial asset models with operational assumptions, Quant. Finance Econ. 3 no. 4 (2019), 661–708. DOI
-
H. Föllmer and A. Schied, Stochastic finance: An introduction in discrete time, fourth rev. ed., De Gruyter Graduate, De Gruyter, Berlin, 2016. DOI MR Zbl
-
H. König, Integraltheorie ohne Verbandspostulat, Math. Ann. 258 no. 4 (1982), 447–458. DOI MR Zbl
-
M. Leinert, Daniell–Stone integration without the lattice condition, Arch. Math. 38 no. 3 (1982), 258–265. DOI MR Zbl
-
N. Perkowski and D. J. Prömel, Pathwise stochastic integrals for model free finance, Bernoulli 22 no. 4 (2016), 2486–2520. DOI MR Zbl
-
G. Shafer and V. Vovk, Game-theoretic foundations for probability and finance, Wiley Ser. Probab. Stat., Wiley-Interscience, New York, 2019. DOI Zbl
-
G. Shafer, V. Vovk, and A. Takemura, Lévy's zero-one law in game-theoretic probability, J. Theoret. Probab. 25 no. 1 (2012), 1–24. DOI MR Zbl
-
A. W. van der Vaart and J. A. Wellner, Weak convergence and empirical processes, Springer Series in Statistics, Springer, New York, 1996. DOI MR Zbl
-
V. Vovk, Continuous-time trading and the emergence of probability, Finance Stoch. 16 no. 4 (2012), 561–609. DOI MR Zbl
-
V. Vovk, Itô calculus without probability in idealized financial markets, Lith. Math. J. 55 no. 2 (2015), 270–290. DOI MR Zbl
|