Current volume
Past volumes
1952-1968 Revista de la Unión Matemática Argentina y de la Asociación Física Argentina
1944-1951 Revista de la Unión Matemática Argentina; órgano de la Asociación Física Argentina
1936-1944
|
Depth and Stanley depth of powers of the path ideal of a cycle graph
Silviu Bălănescu and Mircea Cimpoeaş
Volume 68, no. 2
(2025),
pp. 677–690
Published online (final version): October 8, 2025
https://doi.org/10.33044/revuma.4641
Download PDF
Abstract
Let $J_{n,m}:=(x_1x_2\cdots x_m, x_2x_3\cdots x_{m+1}, \ldots, x_{n-m+1}\cdots x_n,
x_{n-m+2}\cdots x_nx_1, \ldots, x_nx_1\cdots x_{m-1})$ be the $m$-path ideal of the cycle
graph of length $n$ in the ring $S=K[x_1,\ldots,x_n]$. Let $d=\gcd(n,m)$. We prove that
$\operatorname{depth}(S/J_{n,m}^t)\leq d-1$ for all $t\geq n-1$. We show that
$\operatorname{sdepth}(S/J_{n,n-1}^t)=\operatorname{depth}(S/J_{n,n-1}^t)=\max\{n-t-1,0\}$
for all $t\geq 1$. Also, we give some bounds for $\operatorname{depth}(S/J_{n,m}^t)$ and
$\operatorname{sdepth}(S/J_{n,m}^t)$, where $t\geq 1$.
References
-
J. Abbott, A. M. Bigatti, and L. Robbiano, CoCoA: A system for doing Computations in Commutative Algebra. Available at https://cocoa.dima.unige.it.
-
J. Apel, On a conjecture of R. P. Stanley. II. Quotients modulo monomial ideals, J. Algebraic Combin. 17 no. 1 (2003), 57–74. DOI MR Zbl
-
S. Bălănescu and M. Cimpoeaş, Depth and Stanley depth of powers of the path ideal of a path graph, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 86 no. 4 (2024), 65–76. MR Available at https://web.archive.org/web/20250927124258/https://www.scientificbulletin.upb.ro/rev_docs_arhiva/fullab6_354158.pdf.
-
M. Cimpoeaş, Stanley depth of monomial ideals with small number of generators, Cent. Eur. J. Math. 7 no. 4 (2009), 629–634. DOI MR Zbl
-
M. Cimpoeaş, Several inequalities regarding Stanley depth, Rom. J. Math. Comput. Sci. 2 no. 1 (2012), 28–40. MR Zbl
-
A. Conca and E. De Negri, $M$-sequences, graph ideals, and ladder ideals of linear type, J. Algebra 211 no. 2 (1999), 599–624. DOI MR Zbl
-
A. M. Duval, B. Goeckner, C. J. Klivans, and J. L. Martin, A non-partitionable Cohen–Macaulay simplicial complex, Adv. Math. 299 (2016), 381–395. DOI MR Zbl
-
J. Herzog, A survey on Stanley depth, in Monomial ideals, computations and applications, Lecture Notes in Math. 2083, Springer, Heidelberg, 2013, pp. 3–45. DOI MR Zbl
-
J. Herzog, M. Vladoiu, and X. Zheng, How to compute the Stanley depth of a monomial ideal, J. Algebra 322 no. 9 (2009), 3151–3169. DOI MR Zbl
-
N. C. Minh, T. N. Trung, and T. Vu, Depth of powers of edge ideals of cycles and trees, 2023. arXiv:2308.00874v1 [math.AC].
-
A. Popescu, Special Stanley decompositions, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 53(101) no. 4 (2010), 363–372. MR Zbl
-
A. Rauf, Depth and Stanley depth of multigraded modules, Comm. Algebra 38 no. 2 (2010), 773–784. DOI MR Zbl
-
G. Rinaldo, An algorithm to compute the Stanley depth of monomial ideals, Matematiche (Catania) 63 no. 2 (2008), 243–256. MR Zbl
-
R. P. Stanley, Linear Diophantine equations and local cohomology, Invent. Math. 68 no. 2 (1982), 175–193. DOI MR Zbl
-
R. H. Villarreal, Monomial algebras, second ed., Monogr. Res. Notes Math., CRC Press, Boca Raton, 2015. DOI MR Zbl
|