Current volume
Past volumes
1952-1968 Revista de la Unión Matemática Argentina y de la Asociación Física Argentina
1944-1951 Revista de la Unión Matemática Argentina; órgano de la Asociación Física Argentina
1936-1944
|
On a non-standard characterization of the $A_p$ condition
Andrei K. Lerner
Volume 68, no. 2
(2025),
pp. 691–701
Published online (final version): October 8, 2025
https://doi.org/10.33044/revuma.4964
Download PDF
Abstract
The classical Muckenhoupt $A_p$ condition is necessary and sufficient for the boundedness
of the maximal operator $M$ on $L^p(w)$ spaces. In this paper we obtain another
characterization of the $A_p$ condition. As a result, we show that some strong versions of
the weighted $L^p(w)$ Coifman–Fefferman and Fefferman–Stein inequalities hold if and only
if $w\in A_p$. We also give new examples of Banach function spaces $X$ such that $M$ is
bounded on $X$ but not bounded on the associate space $X'$.
References
-
J. Alvarez and C. Pérez, Estimates with $A_\infty$ weights for various singular integral operators, Boll. Un. Mat. Ital. A (7) 8 no. 1 (1994), 123–133. MR Zbl
-
J. Canto, K. Li, L. Roncal, and O. Tapiola, $C_p$ estimates for rough homogeneous singular integrals and sparse forms, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 22 no. 3 (2021), 1131–1168. DOI MR Zbl
-
R. R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241–250. DOI MR Zbl
-
R. R. Coifman and R. Rochberg, Another characterization of BMO, Proc. Amer. Math. Soc. 79 no. 2 (1980), 249–254. DOI MR Zbl
-
C. Fefferman and B. Muckenhoupt, Two nonequivalent conditions for weight functions, Proc. Amer. Math. Soc. 45 (1974), 99–104. DOI MR Zbl
-
C. Fefferman and E. M. Stein, $H^{p}$ spaces of several variables, Acta Math. 129 no. 3-4 (1972), 137–193. DOI MR Zbl
-
L. Grafakos, Classical Fourier analysis, third ed., Graduate Texts in Mathematics 249, Springer, New York, 2014. DOI MR Zbl
-
A. K. Lerner, A note on the Coifman–Fefferman and Fefferman–Stein inequalities, Ark. Mat. 58 no. 2 (2020), 357–367. DOI MR Zbl
-
A. K. Lerner and S. Ombrosi, A boundedness criterion for general maximal operators, Publ. Mat. 54 no. 1 (2010), 53–71. DOI MR Zbl
-
E. Lorist and Z. Nieraeth, Banach function spaces done right, Indag. Math. (N.S.) 35 no. 2 (2024), 247–268. DOI MR Zbl
-
B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207–226. DOI MR Zbl
-
B. Muckenhoupt, Norm inequalities relating the Hilbert transform to the Hardy–Littlewood maximal function, in Functional analysis and approximation (Oberwolfach, 1980), Internat. Ser. Numer. Math. 60, Birkhäuser, Basel-Boston, Mass., 1981, pp. 219–231. MR Zbl
-
Z. Nieraeth, The Muckenhoupt condition, J. Funct. Anal. (2025), article no. 111209. DOI
-
D. V. Rutsky, Corrigendum to “$\mathrm{A}_1$-regularity and boundedness of Calderón–Zygmund operators” with some remarks (Studia Math. 221 (2014), 231–247), Studia Math. 248 no. 3 (2019), 217–231. DOI MR Zbl
-
E. T. Sawyer, Norm inequalities relating singular integrals and the maximal function, Studia Math. 75 no. 3 (1983), 253–263. DOI MR Zbl
-
E. M. Stein, Harmonic analysis: Real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series 43, Princeton University Press, Princeton, NJ, 1993. MR Zbl
-
K. Yabuta, Sharp maximal function and $C_p$ condition, Arch. Math. 55 no. 2 (1990), 151–155. DOI MR Zbl
|