Revista de la
Unión Matemática Argentina
On $L_p$ Ky Fan determinant inequalities
Bingxiu Lyu and Danni Xu

Volume 68, no. 2 (2025), pp. 735–744    

Published online (final version): October 9, 2025

https://doi.org/10.33044/revuma.4585

Download PDF

Abstract

We establish an extension of Ky Fan's determinant inequality when the usual matrix addition is replaced by the power mean of positive definite matrices. We further explore variants of this newly derived $L_p$ Ky Fan inequality, extending a determinant difference inequality formulated by Yuan and Leng [J. Aust. Math. Soc. 83 no. 1 (2007)].

References

  1. A. D. Aleksandrov, Zur Theorie der gemischten Volumina von konvexen Körpern. IV. Die gemischten Diskriminanten und die gemischten Volumina (in Russian), Mat. Sb. 3(45) no. 2 (1938), 227–251.  Zbl Available at http://eudml.org/doc/64968.
  2. T. Ando, Concavity of certain maps on positive definite matrices and applications to Hadamard products, Linear Algebra Appl. 26 (1979), 203–241.  DOI  MR  Zbl
  3. E. F. Beckenbach and R. Bellman, Inequalities, Ergeb. Math. Grenzgeb. (N.F.) 30, Springer, Berlin-Göttingen-Heidelberg, 1961.  MR  Zbl
  4. H. Bergström, A triangle-inequality for matrices, in Den 11te Skandinaviske Matematikerkongress, Trondheim, 1949, Johan Grundt Tanums Forlag, Oslo, 1952, pp. 264–267.  MR  Zbl
  5. K. Fan, Some inequalities concerning positive-definite Hermitian matrices, Proc. Cambridge Philos. Soc. 51 (1955), 414–421.  MR  Zbl
  6. M. Fiedler and T. L. Markham, Some results on the Bergstrom and Minkowski inequalities, Linear Algebra Appl. 232 (1996), 199–211.  DOI  MR  Zbl
  7. A. Halder, Smallest ellipsoid containing $p$-sum of ellipsoids with application to reachability analysis, IEEE Trans. Automat. Control 66 no. 6 (2021), 2512–2525.  DOI  MR  Zbl
  8. R. A. Horn and C. R. Johnson, Matrix analysis, second ed., Cambridge University Press, Cambridge, 2013.  DOI  MR  Zbl
  9. C.-K. Li and R. Mathias, Extremal characterizations of the Schur complement and resulting inequalities, SIAM Rev. 42 no. 2 (2000), 233–246.  DOI  MR  Zbl
  10. Y. Li and L. Feng, Extensions of Brunn–Minkowski's inequality to multiple matrices, Linear Algebra Appl. 603 (2020), 91–100.  DOI  MR  Zbl
  11. J. Liu, Generalizations of the Brunn–Minkowski inequality, Linear Algebra Appl. 508 (2016), 206–213.  DOI  MR  Zbl
  12. L. Losonczi and Z. Páles, Inequalities for indefinite forms, J. Math. Anal. Appl. 205 no. 1 (1997), 148–156.  DOI  MR  Zbl
  13. A. W. Marshall and I. Olkin, Inequalities: Theory of majorization and its applications, Mathematics in Science and Engineering 143, Academic Press, New York-London, 1979.  MR  Zbl
  14. S. G. Wang, M. X. Wu, and Z. Z. Jia, Matrix inequalities (in Chinese), second ed., University Mathematics Science Series 12, Chinese Science Press, Beijing, 2006.
  15. J. Yuan and G. Leng, A generalization of the matrix form of the Brunn–Minkowski inequality, J. Aust. Math. Soc. 83 no. 1 (2007), 125–134.  DOI  MR  Zbl
  16. X. Zhan, Matrix inequalities, Lecture Notes in Math. 1790, Springer, Berlin, 2002.  DOI  MR  Zbl