Current volume
Past volumes
1952-1968 Revista de la Unión Matemática Argentina y de la Asociación Física Argentina
1944-1951 Revista de la Unión Matemática Argentina; órgano de la Asociación Física Argentina
1936-1944
|
On $L_p$ Ky Fan determinant inequalities
Bingxiu Lyu and Danni Xu
Volume 68, no. 2
(2025),
pp. 735–744
Published online (final version): October 9, 2025
https://doi.org/10.33044/revuma.4585
Download PDF
Abstract
We establish an extension of Ky Fan's determinant inequality when the usual matrix
addition is replaced by the power mean of positive definite matrices. We further explore
variants of this newly derived $L_p$ Ky Fan inequality, extending a determinant difference
inequality formulated by Yuan and Leng [J. Aust. Math. Soc. 83 no. 1 (2007)].
References
-
A. D. Aleksandrov, Zur Theorie der gemischten Volumina von konvexen Körpern. IV. Die gemischten Diskriminanten und die gemischten Volumina (in Russian), Mat. Sb. 3(45) no. 2 (1938), 227–251. Zbl Available at http://eudml.org/doc/64968.
-
T. Ando, Concavity of certain maps on positive definite matrices and applications to Hadamard products, Linear Algebra Appl. 26 (1979), 203–241. DOI MR Zbl
-
E. F. Beckenbach and R. Bellman, Inequalities, Ergeb. Math. Grenzgeb. (N.F.) 30, Springer, Berlin-Göttingen-Heidelberg, 1961. MR Zbl
-
H. Bergström, A triangle-inequality for matrices, in Den 11te Skandinaviske Matematikerkongress, Trondheim, 1949, Johan Grundt Tanums Forlag, Oslo, 1952, pp. 264–267. MR Zbl
-
K. Fan, Some inequalities concerning positive-definite Hermitian matrices, Proc. Cambridge Philos. Soc. 51 (1955), 414–421. MR Zbl
-
M. Fiedler and T. L. Markham, Some results on the Bergstrom and Minkowski inequalities, Linear Algebra Appl. 232 (1996), 199–211. DOI MR Zbl
-
A. Halder, Smallest ellipsoid containing $p$-sum of ellipsoids with application to reachability analysis, IEEE Trans. Automat. Control 66 no. 6 (2021), 2512–2525. DOI MR Zbl
-
R. A. Horn and C. R. Johnson, Matrix analysis, second ed., Cambridge University Press, Cambridge, 2013. DOI MR Zbl
-
C.-K. Li and R. Mathias, Extremal characterizations of the Schur complement and resulting inequalities, SIAM Rev. 42 no. 2 (2000), 233–246. DOI MR Zbl
-
Y. Li and L. Feng, Extensions of Brunn–Minkowski's inequality to multiple matrices, Linear Algebra Appl. 603 (2020), 91–100. DOI MR Zbl
-
J. Liu, Generalizations of the Brunn–Minkowski inequality, Linear Algebra Appl. 508 (2016), 206–213. DOI MR Zbl
-
L. Losonczi and Z. Páles, Inequalities for indefinite forms, J. Math. Anal. Appl. 205 no. 1 (1997), 148–156. DOI MR Zbl
-
A. W. Marshall and I. Olkin, Inequalities: Theory of majorization and its applications, Mathematics in Science and Engineering 143, Academic Press, New York-London, 1979. MR Zbl
-
S. G. Wang, M. X. Wu, and Z. Z. Jia, Matrix inequalities (in Chinese), second ed., University Mathematics Science Series 12, Chinese Science Press, Beijing, 2006.
-
J. Yuan and G. Leng, A generalization of the matrix form of the Brunn–Minkowski inequality, J. Aust. Math. Soc. 83 no. 1 (2007), 125–134. DOI MR Zbl
-
X. Zhan, Matrix inequalities, Lecture Notes in Math. 1790, Springer, Berlin, 2002. DOI MR Zbl
|