Current volume
Past volumes
1952-1968 Revista de la Unión Matemática Argentina y de la Asociación Física Argentina
1944-1951 Revista de la Unión Matemática Argentina; órgano de la Asociación Física Argentina
1936-1944
|
Superpower graphs of finite abelian groups
Ajay Kumar, Lavanya Selvaganesh, and T. Tamizh Chelvam
Volume 68, no. 2
(2025),
pp. 761–773
Published online (final version): October 28, 2025
https://doi.org/10.33044/revuma.4587
Download PDF
Abstract
For a finite group $G$, the superpower graph $S(G)$ is a simple undirected graph with
vertex set $G$, where two distinct vertices are adjacent if and only if the order of one
divides that of the other. The aim of this paper is to provide tight bounds for the vertex
connectivity of $S(G)$, together with some structural properties such as maximal
domination sets, Hamiltonicity, and its variations for superpower graphs of finite abelian
groups. The paper concludes with some open problems.
References
-
J. Abawajy, A. Kelarev, and M. Chowdhury, Power graphs: a survey, Electron. J. Graph Theory Appl. (EJGTA) 1 no. 2 (2013), 125–147. DOI MR Zbl
-
A. K. Asboei and S. S. Salehi, Some results on the main supergraph of finite groups, Algebra Discrete Math. 30 no. 2 (2020), 172–178. DOI MR Zbl
-
J. A. Bondy and U. S. R. Murty, Graph theory, Grad. Texts in Math. 244, Springer, New York, 2008. MR Zbl
-
I. Chakrabarty, S. Ghosh, and M. K. Sen, Undirected power graphs of semigroups, Semigroup Forum 78 no. 3 (2009), 410–426. DOI MR Zbl
-
S. J. Curran and J. A. Gallian, Hamiltonian cycles and paths in Cayley graphs and digraphs—a survey, Discrete Math. 156 no. 1-3 (1996), 1–18. DOI MR Zbl
-
J. A. Gallian, Contemporary abstract algebra, fourth ed., Narosa, New Delhi, 1999. Zbl
-
A. Hamzeh and A. R. Ashrafi, Automorphism groups of supergraphs of the power graph of a finite group, European J. Combin. 60 (2017), 82–88. DOI MR Zbl
-
A. Hamzeh and A. R. Ashrafi, Spectrum and $L$-spectrum of the power graph and its main supergraph for certain finite groups, Filomat 31 no. 16 (2017), 5323–5334. DOI MR Zbl
-
A. Hamzeh and A. R. Ashrafi, The order supergraph of the power graph of a finite group, Turkish J. Math. 42 no. 4 (2018), 1978–1989. DOI MR Zbl
-
A. Hamzeh and A. R. Ashrafi, Some remarks on the order supergraph of the power graph of a finite group, Int. Electron. J. Algebra 26 (2019), 1–12. DOI MR Zbl
-
A. Kelarev, Ring constructions and applications, Series in Algebra 9, World Scientific, River Edge, NJ, 2002. MR Zbl
-
A. Kelarev, Graph algebras and automata, Monogr. Textbooks Pure Appl. Math. 257, Marcel Dekker, New York, 2003. MR Zbl
-
A. Kelarev, Labelled Cayley graphs and minimal automata, Australas. J. Combin. 30 (2004), 95–101. MR Zbl
-
A. Kelarev, J. Ryan, and J. Yearwood, Cayley graphs as classifiers for data mining: the influence of asymmetries, Discrete Math. 309 no. 17 (2009), 5360–5369. DOI MR Zbl
-
A. Kumar, L. Selvaganesh, P. J. Cameron, and T. Tamizh Chelvam, Recent developments on the power graph of finite groups—a survey, AKCE Int. J. Graphs Comb. 18 no. 2 (2021), 65–94. DOI MR Zbl
-
A. Kumar, L. Selvaganesh, and T. Tamizh Chelvam, Structural properties of super power graph of dihedral group $D_{2n}$, preprint, 2021.
-
C. H. Li, On isomorphisms of finite Cayley graphs—a survey, Discrete Math. 256 no. 1-2 (2002), 301–334. DOI MR Zbl
-
X. Ma and H. Su, On the order supergraph of the power graph of a finite group, Ric. Mat. 71 no. 2 (2022), 381–390. DOI MR Zbl
-
M. Mirzargar, A survey on the automorphism groups of the commuting graphs and power graphs, Facta Univ. Ser. Math. Inform. 34 no. 4 (2019), 729–743. DOI MR Zbl
-
D. Witte and J. A. Gallian, A survey: Hamiltonian cycles in Cayley graphs, Discrete Math. 51 no. 3 (1984), 293–304. DOI MR Zbl
|