Current volume
Past volumes
1952-1968 Revista de la Unión Matemática Argentina y de la Asociación Física Argentina
1944-1951 Revista de la Unión Matemática Argentina; órgano de la Asociación Física Argentina
1936-1944
|
Recurrence for weighted pseudo-shift operators
Mohamed Amouch and Fatima-ezzahra Sadek
Volume 68, no. 2
(2025),
pp. 775–786
Published online (final version): October 29, 2025
https://doi.org/10.33044/revuma.4120
Download PDF
Abstract
We provide a characterization of multiply recurrent operators that act on a Fréchet space.
As an application, we extend the weighted shift results established by Costakis and
Parissis (2012). We achieve this by characterizing topologically multiply recurrent
pseudo-shifts acting on an $F$-sequence space indexed by an arbitrary countable infinite
set. This characterization is in terms of the weights, the OP-basis and the shift mapping.
Additionally, we establish that the recurrence and the hypercyclicity of pseudo-shifts are
equivalent.
References
-
F. Bayart and E. Matheron, Dynamics of linear operators, Cambridge Tracts in Mathematics 179, Cambridge University Press, Cambridge, 2009. DOI MR Zbl
-
O. Benchiheb, F. Sadek, and M. Amouch, On super-rigid and uniformly super-rigid operators, Afr. Mat. 34 no. 1 (2023), Paper no. 6. DOI MR Zbl
-
A. Bonilla, K.-G. Grosse-Erdmann, A. López-Martínez, and A. Peris, Frequently recurrent operators, J. Funct. Anal. 283 no. 12 (2022), Paper no. 109713. DOI MR Zbl
-
R. Cardeccia and S. Muro, Arithmetic progressions and chaos in linear dynamics, Integral Equations Operator Theory 94 no. 2 (2022), Paper no. 11. DOI MR Zbl
-
R. Cardeccia and S. Muro, Multiple recurrence and hypercyclicity, Math. Scand. 128 no. 3 (2022), 589–610. DOI MR Zbl
-
R. Cardeccia and S. Muro, Frequently recurrence properties and block families, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 119 no. 3 (2025), Paper no. 60. DOI MR Zbl
-
N. Çolakoğlu, Ö. Martin, and R. Sanders, Disjoint and simultaneously hypercyclic pseudo-shifts, J. Math. Anal. Appl. 512 no. 2 (2022), Paper no. 126130. DOI MR Zbl
-
G. Costakis, A. Manoussos, and I. Parissis, Recurrent linear operators, Complex Anal. Oper. Theory 8 no. 8 (2014), 1601–1643. DOI MR Zbl
-
G. Costakis and I. Parissis, Szemerédi's theorem, frequent hypercyclicity and multiple recurrence, Math. Scand. 110 no. 2 (2012), 251–272. DOI MR Zbl
-
N. S. Feldman, The dynamics of cohyponormal operators, in Trends in Banach spaces and operator theory (Memphis, TN, 2001), Contemp. Math. 321, American Mathematical Society, Providence, RI, 2003, pp. 71–85. DOI MR Zbl
-
H. Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions, J. Analyse Math. 31 (1977), 204–256. DOI MR Zbl
-
S. Grivaux, A. López-Martínez, and A. Peris, Questions in linear recurrence I: the $T\oplus T$-recurrence problem, Anal. Math. Phys. 15 no. 1 (2025), Paper no. 1. DOI MR Zbl
-
K.-G. Grosse-Erdmann, Hypercyclic and chaotic weighted shifts, Studia Math. 139 no. 1 (2000), 47–68. DOI MR Zbl
-
K.-G. Grosse-Erdmann and A. Peris Manguillot, Linear chaos, Universitext, Springer, London, 2011. DOI MR Zbl
-
Ö. Martin, Q. Menet, and Y. Puig, Disjoint frequently hypercyclic pseudo-shifts, J. Funct. Anal. 283 no. 1 (2022), Paper no. 109474. DOI MR Zbl
-
H. Poincaré, Sur le problème des trois corps et les équations de la dynamique, Acta Math. 13 no. 1-2 (1890), 1–270. Zbl Available at https://projecteuclid.org/journals/acta-mathematica/volume-13/issue-1-2.
-
H. N. Salas, Hypercyclic weighted shifts, Trans. Amer. Math. Soc. 347 no. 3 (1995), 993–1004. DOI MR Zbl
-
Y. Wang, C. Chen, and Z.-H. Zhou, Disjoint hypercyclic weighted pseudoshift operators generated by different shifts, Banach J. Math. Anal. 13 no. 4 (2019), 815–836. DOI MR Zbl
|