Current volume
Past volumes
1952-1968 Revista de la Unión Matemática Argentina y de la Asociación Física Argentina
1944-1951 Revista de la Unión Matemática Argentina; órgano de la Asociación Física Argentina
1936-1944
|
A note on the Schwarz fractal derivative
Luis Ángel García Pacheco, Daniel Alfonso Santiesteban, Ricardo Abreu Blaya, and José María Sigarreta Almira
Volume 69, no. 1
(2026),
pp. 1–20
Published online (final version): November 19, 2025
https://doi.org/10.33044/revuma.4981
Download PDF
Abstract
We define a Schwarz fractal derivative of order $n$ for a real-valued function $f(t)$ as
the limit
\[
(\mathrm{S}^{\alpha,\beta}_nf)(t_0)=\lim_{t\to t_0}
\frac{\sum_{j=0}^n\binom{n}{j}(-1)^jf^\beta\bigl(t_0+\frac{n-2j}{2}(t-t_0)\bigr)}{(t^\alpha-t_0^\alpha)^n},
\]
where $\alpha,\beta>0$ and $f^\beta:=f|f|^{\beta-1}$. This derivative
naturally generalizes the one introduced by Riemann in 1854. We study its essential
properties and its relationship with other fractal derivatives recently reported in the
literature. We obtain certain analogues of the mean value and Rolle theorems, together
with some of their most important consequences. Finally, we propose an extension of such
derivatives to the several-variable setting.
References
-
D. Alfonso Santiesteban, A. Portilla, J. M. Rodríguez-García, and J. M. Sigarreta, On fractal derivatives and applications, Math. Methods Appl. Sci. 48 no. 11 (2025), 10726–10739. DOI MR Zbl
-
J. M. Ash, A new, harder proof that continuous functions with Schwarz derivative $0$ are lines, in Fourier analysis: Analytic and geometric aspects (Orono, ME, 1992), Lecture Notes in Pure and Appl. Math. 157, Dekker, New York, 1994, pp. 35–46. MR Zbl
-
A. Atangana and S. Qureshi, Modeling attractors of chaotic dynamical systems with fractal-fractional operators, Chaos Solitons Fractals 123 (2019), 320–337. DOI MR Zbl
-
C. E. Aull, The first symmetric derivative, Amer. Math. Monthly 74 (1967), 708–711. DOI MR Zbl
-
C. L. Belna, M. J. Evans, and P. D. Humke, Symmetric and ordinary differentiation, Proc. Amer. Math. Soc. 72 no. 2 (1978), 261–267. DOI MR Zbl
-
W. Chen, Time-space fabric underlying anomalous diffusion, Chaos Solitons Fractals 28 no. 4 (2006), 923–929. DOI Zbl
-
F. M. Filipczak, Sur les dérivées symétriques des fonctions approximativement continues, Colloq. Math. 34 no. 2 (1976), 249–256. DOI MR Zbl
-
A. K. Golmankhaneh, Fractal calculus and its applications: $\mathrm{F}^\alpha$-calculus, World Scientific, Singapore, 2022. DOI MR Zbl
-
S. L. Haines, The symmetric derivative, Master's thesis, Bowling Green State University, 1965. Available at http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1670603448495953.
-
J. C. Hernández-Gómez, R. Reyes, J. M. Rodríguez, and J. M. Sigarreta, Fractional model for the study of the tuberculosis in Mexico, Math. Methods Appl. Sci. 45 no. 17 (2022), 10675–10688. DOI MR Zbl
-
R. Kanno, Representation of random walk in fractal space-time, Phys. A 248 no. 1-2 (1998), 165–175. DOI
-
L. Larson, The symmetric derivative, Trans. Amer. Math. Soc. 277 no. 2 (1983), 589–599. DOI MR Zbl
-
S. Rădulescu, P. Alexandrescu, and D.-O. Alexandrescu, Generalized Riemann derivative, Electron. J. Differential Equations 2013 (2013), No. 74. MR Zbl Available at https://emis.de/ft/1075.
-
B. Riemann, Ueber die Darstellbarkeit einer Function durch eine trigonometrische Reihe, Dieterich, Göttingen, 1867. Available at https://eudml.org/doc/203787.
-
M. Spivak, Calculus, second ed., Publish or Perish, Berkeley, CA, 1980. Zbl
-
E. M. Stein and A. Zygmund, On the differentiability of functions, Studia Math. 23 (1964), 247–283. DOI MR Zbl
|