Revista de la
Unión Matemática Argentina
Stability of the Ritz projection in weighted $W^{1,1}$
Irene Drelichman and Ricardo G. Durán

Volume 69, no. 1 (2026), pp. 21–24    

Published online (final version): November 19, 2025

https://doi.org/10.33044/revuma.5001

Download PDF

Abstract

We prove stability in weighted $W^{1,1}$ spaces for standard finite element approximations of the Poisson equation in convex polygonal or polyhedral domains, when the weight belongs to Muckenhoupt's class $A_1$ and the family of meshes is quasi-uniform.

References

  1. S. C. Brenner and L. R. Scott, The mathematical theory of finite element methods, third ed., Texts in Applied Mathematics 15, Springer, New York, 2008.  DOI  MR  Zbl
  2. P. G. Ciarlet, The finite element method for elliptic problems, Classics in Applied Mathematics 40, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002.  DOI  MR  Zbl
  3. A. Demlow, D. Leykekhman, A. H. Schatz, and L. B. Wahlbin, Best approximation property in the $W^{1}_{\infty}$ norm for finite element methods on graded meshes, Math. Comp. 81 no. 278 (2012), 743–764.  DOI  MR  Zbl
  4. L. Diening, J. Rolfes, and A. J. Salgado, Pointwise gradient estimate of the Ritz projection, SIAM J. Numer. Anal. 62 no. 3 (2024), 1212–1225.  DOI  MR  Zbl
  5. I. Drelichman, R. G. Durán, and I. Ojea, A weighted setting for the numerical approximation of the Poisson problem with singular sources, SIAM J. Numer. Anal. 58 no. 1 (2020), 590–606.  DOI  MR  Zbl
  6. J. Guzmán, D. Leykekhman, J. Rossmann, and A. H. Schatz, Hölder estimates for Green's functions on convex polyhedral domains and their applications to finite element methods, Numer. Math. 112 no. 2 (2009), 221–243.  DOI  MR  Zbl
  7. E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series 30, Princeton University Press, Princeton, NJ, 1970.  MR  Zbl