Stability of the Ritz projection in weighted $W^{1,1}$
Irene Drelichman and Ricardo G. Durán
Volume 69, no. 1
(2026),
pp. 21–24
Published online (final version): November 19, 2025
https://doi.org/10.33044/revuma.5001
Download PDF
Abstract
We prove stability in weighted $W^{1,1}$ spaces for standard finite element approximations
of the Poisson equation in convex polygonal or polyhedral domains, when the weight belongs
to Muckenhoupt's class $A_1$ and the family of meshes is quasi-uniform.
References
-
S. C. Brenner and L. R. Scott, The mathematical theory of finite element methods, third ed., Texts in Applied Mathematics 15, Springer, New York, 2008. DOI MR Zbl
-
P. G. Ciarlet, The finite element method for elliptic problems, Classics in Applied Mathematics 40, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002. DOI MR Zbl
-
A. Demlow, D. Leykekhman, A. H. Schatz, and L. B. Wahlbin, Best approximation property in the $W^{1}_{\infty}$ norm for finite element methods on graded meshes, Math. Comp. 81 no. 278 (2012), 743–764. DOI MR Zbl
-
L. Diening, J. Rolfes, and A. J. Salgado, Pointwise gradient estimate of the Ritz projection, SIAM J. Numer. Anal. 62 no. 3 (2024), 1212–1225. DOI MR Zbl
-
I. Drelichman, R. G. Durán, and I. Ojea, A weighted setting for the numerical approximation of the Poisson problem with singular sources, SIAM J. Numer. Anal. 58 no. 1 (2020), 590–606. DOI MR Zbl
-
J. Guzmán, D. Leykekhman, J. Rossmann, and A. H. Schatz, Hölder estimates for Green's functions on convex polyhedral domains and their applications to finite element methods, Numer. Math. 112 no. 2 (2009), 221–243. DOI MR Zbl
-
E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series 30, Princeton University Press, Princeton, NJ, 1970. MR Zbl