Current volume
Past volumes
1952-1968 Revista de la Unión Matemática Argentina y de la Asociación Física Argentina
1944-1951 Revista de la Unión Matemática Argentina; órgano de la Asociación Física Argentina
1936-1944
|
Endpoint estimates for higher-order Gaussian Riesz transforms
Fabio Berra, Estefanía Dalmasso, and Roberto Scotto
Volume 69, no. 1
(2026),
pp. 25–43
Published online (final version): November 19, 2025
https://doi.org/10.33044/revuma.4878
Download PDF
Abstract
We show that, contrary to the behavior of the higher-order Riesz transforms studied so far
on the atomic Hardy space $\mathcal{H}^1(\mathbb{R}^n, \gamma)$ associated with the
Ornstein–Uhlenbeck operator with respect to the $n$-dimensional Gaussian measure $\gamma$,
the new Gaussian Riesz transforms are bounded from $\mathcal{H}^1(\mathbb{R}^n, \gamma)$
to $L^1(\mathbb{R}^n, \gamma)$, for any order and any dimension $n$. We also prove that
the classical Gaussian Riesz transforms of higher order are bounded from an appropriate
subspace of $\mathcal{H}^1(\mathbb{R}^n, \gamma)$ into $L^1(\mathbb{R}^n, \gamma)$,
extending T. Bruno (2019) to the first-order case.
References
-
H. Aimar, L. Forzani, and R. Scotto, On Riesz transforms and maximal functions in the context of Gaussian harmonic analysis, Trans. Amer. Math. Soc. 359 no. 5 (2007), 2137–2154. DOI MR Zbl
-
J. J. Betancor, E. Dalmasso, P. Quijano, and R. Scotto, Maximal function characterization of Hardy spaces related to Laguerre polynomial expansions, Collect. Math. 76 no. 2 (2025), 303–336. DOI MR Zbl
-
T. Bruno, Endpoint results for the Riesz transform of the Ornstein–Uhlenbeck operator, J. Fourier Anal. Appl. 25 no. 4 (2019), 1609–1631. DOI MR Zbl
-
L. C. Evans, Partial differential equations, second ed., Graduate Studies in Mathematics 19, American Mathematical Society, Providence, RI, 2010. DOI MR Zbl
-
L. Forzani, E. Harboure, and R. Scotto, Weak type inequality for a family of singular integral operators related with the Gaussian measure, Potential Anal. 31 no. 2 (2009), 103–116. DOI MR Zbl
-
L. Forzani, E. Sasso, and R. Scotto, $L^p$ boundedness of Riesz transforms for orthogonal polynomials in a general context, Studia Math. 231 no. 1 (2015), 45–71. DOI MR Zbl
-
L. Forzani, R. Scotto, and W. Urbina, A simple proof of the $L^p$ continuity of the higher order Riesz transforms with respect to the Gaussian measure $\gamma_d$, in Séminaire de Probabilités, XXXV, Lecture Notes in Math. 1755, Springer, Berlin, 2001, pp. 162–166. DOI MR Zbl
-
A. Grigor'yan, Heat kernel and analysis on manifolds, AMS/IP Stud. Adv. Math. 47, American Mathematical Society, Providence, RI; International Press, Boston, MA, 2009. DOI MR Zbl
-
C. E. Gutiérrez, C. Segovia, and J. L. Torrea, On higher Riesz transforms for Gaussian measures, J. Fourier Anal. Appl. 2 no. 6 (1996), 583–596. DOI MR Zbl
-
G. Mauceri and S. Meda, BMO and $H^1$ for the Ornstein–Uhlenbeck operator, J. Funct. Anal. 252 no. 1 (2007), 278–313. DOI MR Zbl
-
G. Mauceri, S. Meda, and P. Sjögren, A maximal function characterization of the Hardy space for the Gauss measure, Proc. Amer. Math. Soc. 141 no. 5 (2013), 1679–1692. DOI MR Zbl
-
G. Mauceri, S. Meda, and M. Vallarino, Atomic decomposition of Hardy type spaces on certain noncompact manifolds, J. Geom. Anal. 22 no. 3 (2012), 864–891. DOI MR Zbl
-
P.-A. Meyer, Transformations de Riesz pour les lois gaussiennes, in Séminaire de Probabilités XVIII, 1982/83, Lecture Notes in Math. 1059, Springer, Berlin, 1984, pp. 179–193. DOI MR Zbl
-
W. Urbina-Romero, Gaussian harmonic analysis, Springer Monographs in Mathematics, Springer, Cham, 2019. DOI MR Zbl
|