Current volume
Past volumes
1952-1968 Revista de la Unión Matemática Argentina y de la Asociación Física Argentina
1944-1951 Revista de la Unión Matemática Argentina; órgano de la Asociación Física Argentina
1936-1944
|
The zero forcing number of expanded paths and cycles
Yipeng Liao, Chaohui Chen, Jia Wei, and Zoran Stanić
Volume 69, no. 1
(2026),
pp. 45–53
Published online (final version): November 19, 2025
https://doi.org/10.33044/revuma.5022
Download PDF
Abstract
The zero forcing number, defined as the minimum size of a zero forcing set, serves as an
upper bound for the graph nullity. An expanded path $P_{m_1, m_2, \ldots, m_k}$ (resp.
expanded cycle $C_{m_1, m_2, \ldots, m_k}$) is obtained from the $k$-vertex path (resp.
cycle) by replacing its $i$th vertex with an independent set of $m_i$ vertices. We show
that the zero forcing number of $P_{m_1, m_2, \ldots, m_k}$ (resp. $C_{m_1, m_2, \ldots,
m_k}$) belongs to $\{n-k, n-k+1\}$ (resp. $\{n-k+1, n-k+2\}$), where $n$ is the number of
vertices, and determine when it equals $n-k+1$. As an application, we provide a new proof
of a result of Liang, Li, and Xu characterizing triangle-free graphs with zero forcing
number $n-3$. We also show that for any cycle-spliced graph (i.e., a connected graph all
of whose blocks are cycles), the zero forcing number equals $c+1$, where $c$ is the
cyclomatic number. This gives an upper bound for the nullity and extends a result of Wong,
Zhou, and Tian for the bipartite case.
References
-
AIM Minimum Rank – Special Graphs Work Group, Zero forcing sets and the minimum rank of graphs, Linear Algebra Appl. 428 no. 7 (2008), 1628–1648. DOI MR Zbl
-
J. A. Bondy and U. S. R. Murty, Graph theory, Graduate Texts in Mathematics 244, Springer, New York, 2008. MR Zbl
-
A. E. Brouwer and W. H. Haemers, Spectra of graphs, Universitext, Springer, New York, 2012. DOI MR Zbl
-
D. Burgarth, S. Bose, C. Bruder, and V. Giovannetti, Local controllability of quantum networks, Phys. Rev. A 79 no. 6 (2009), Paper No. 060305. DOI
-
D. Burgarth, D. D'Alessandro, L. Hogben, S. Severini, and M. Young, Zero forcing, linear and quantum controllability for systems evolving on networks, IEEE Trans. Automat. Control 58 no. 9 (2013), 2349–2354. DOI MR Zbl
-
D. Burgarth and V. Giovannetti, Full control by locally induced relaxation, Phys. Rev. Lett. 99 no. 10 (2007), Paper No. 100501. DOI
-
B. Cheng and B. Liu, On the nullity of graphs, Electron. J. Linear Algebra 16 (2007), 60–67. DOI MR Zbl
-
R. Davila and F. Kenter, Bounds for the zero forcing number of graphs with large girth, Theory Appl. Graphs 2 no. 2 (2015), Article 1. DOI MR Zbl
-
S. English, C. MacRury, and P. Prałat, Probabilistic zero forcing on random graphs, European J. Combin. 91 (2021), Paper No. 103207. DOI MR Zbl
-
Y.-Z. Fan and K.-S. Qian, On the nullity of bipartite graphs, Linear Algebra Appl. 430 no. 11-12 (2009), 2943–2949. DOI MR Zbl
-
M. Gentner, L. D. Penso, D. Rautenbach, and U. S. Souza, Extremal values and bounds for the zero forcing number, Discrete Appl. Math. 214 (2016), 196–200. DOI MR Zbl
-
T. Kalinowski, N. Kamčev, and B. Sudakov, The zero forcing number of graphs, SIAM J. Discrete Math. 33 no. 1 (2019), 95–115. DOI MR Zbl
-
Y.-P. Liang, J. Li, and S.-J. Xu, On extremal graphs for zero forcing number, Graphs Combin. 38 no. 6 (2022), Paper No. 185. DOI MR Zbl
-
D. D. Row, A technique for computing the zero forcing number of a graph with a cut-vertex, Linear Algebra Appl. 436 no. 12 (2012), 4423–4432. DOI MR Zbl
-
D. Wong, Q. Zhou, and F. Tian, Nullity and singularity of a graph in which every block is a cycle, Discrete Math. 345 no. 6 (2022), Paper No. 112851. DOI MR Zbl
-
M. Zhao, L. Kang, and G. J. Chang, Power domination in graphs, Discrete Math. 306 no. 15 (2006), 1812–1816. DOI MR Zbl
|